• Ahmed, K. F., , G. Wang, , J. Silander, , A. M. Wilson, , J. M. Allen, , R. Horton, , and R. Anyah, 2013: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global Planet. Change, 100, 320332, doi:10.1016/j.gloplacha.2012.11.003.

    • Search Google Scholar
    • Export Citation
  • Bhend, J., , and P. Whetton, 2013: Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Climatic Change, 118, 799810, doi:10.1007/s10584-012-0691-2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2007: Ensembles and probabilities: A new era in the prediction of climate change. Philos. Trans. Roy. Soc. London,A365, 1957–1970, doi:10.1098/rsta.2007.2068.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., , and R. G. Way, 2013: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc.,140, 1935–1944, doi:10.1002/qj.2297.

  • Curry, J., 2011: Reasoning about climate uncertainty. Climatic Change, 108, 723732, doi:10.1007/s10584-011-0180-z.

  • de Elía, R., , S. Biner, , and A. Frigon, 2013: Interannual variability and expected regional climate change over North America. Climate Dyn., 41, 12451267, doi:10.1007/s00382-013-1717-9.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. Knutti, , S. Solomon, , and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change,2, 775–779, doi:10.1038/NCLIMATE1562.

  • Deser, C., , A. S. Phillips, , M. A. Alexander, , and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • Ehret, U., , E. Zehe, , V. Wulfmeyer, , K. Warrach-Sagi, , and J. Liebert, 2012: HESS opinions “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 33913404, doi:10.5194/hess-16-3391-2012.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Estrada, F., , P. Perron, , and B. Martínez-López, 2013: Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat. Geosci., 6, 10501055, doi:10.1038/ngeo1999.

    • Search Google Scholar
    • Export Citation
  • Foster, G., , and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, doi:10.1088/1748-9326/6/4/044022.

  • Gluhovsky, A., , and E. Agee, 2007: On the analysis of atmospheric and climatic time series. J. Appl. Meteor. Climatol., 46, 11251129, doi:10.1175/JAM2512.1.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., , S. Hagemann, , C. Moseley, , and C. Piani, 2011: Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci., 15, 10651079, doi:10.5194/hess-15-1065-2011.

    • Search Google Scholar
    • Export Citation
  • Hall, J., , C. Twyman, , and A. Kay, 2005: Influence diagrams for representing uncertainty in climate-related propositions. Climatic Change, 69, 343365, doi:10.1007/s10584-005-2527-9.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hopkinson, R. F., , D. W. McKenney, , E. J. Milewska, , M. F. Hutchinson, , P. Papadopol, , and L. A. Vincent, 2011: Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over Canada. J. Appl. Meteor. Climatol., 50, 16541665, doi:10.1175/2011JAMC2684.1.

    • Search Google Scholar
    • Export Citation
  • Huard, D., , D. Chaumont, , T. Logan, , M.-F. Sottile, , R. D. Brown, , B. Gauvin St-Denis, , P. Grenier, , and M. Braun, 2014: A decade of climate scenarios: The Ouranos consortium modus operandi. Bull. Amer. Meteor. Soc.,95, 1213–1225, doi:10.1175/BAMS-D-12-00163.1.

  • Hutchinson, M. F., , D. W. McKenney, , K. Lawrence, , J. H. Pedlar, , R. F. Hopkinson, , E. Milewska, , and P. Papadopol, 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741, doi:10.1175/2008JAMC1979.1.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., , and T. J. Crowley, 2000: Probability of future climatically significant volcanic eruptions. J. Climate, 13, 14451450, doi:10.1175/1520-0442(2000)013<1445:LOFCSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , M. New, , D. E. Parker, , S. Martin, , and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199, doi:10.1029/1999RG900002.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., , H. Kauppi, , M. L. Mann, , and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA,108, 11 790–11 793, doi:10.1073/pnas.1102467108.

  • Keith, D., 2013: A Case for Climate Engineering. MIT Press, 194 pp.

  • Knight, J., and et al. , 2009: Do global temperature trends over the last decade falsify climate predictions? [in “State of the Climate in 2008”]. Bull. Amer. Meteor. Soc., 90 (8), S22S23.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , F. Zeng, , and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, doi:10.1175/JCLI-D-12-00567.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , D. Masson, , and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., , and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett.,38, L01706, doi:10.1029/2010GL045777.

  • Kosaka, Y., , and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 2010: Cycles and trends in solar irradiance and climate. Wiley Interdiscip. Rev.: Climate Change, 1, 111122, doi:10.1002/wcc.18.

    • Search Google Scholar
    • Export Citation
  • Li, J., , C. Sun, , and F.-F. Jin, 2013: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, doi:10.1002/2013GL057877.

    • Search Google Scholar
    • Export Citation
  • Lockwood, M., 2010: Solar change and climate: An update in the light of the current exceptional solar minimum. Proc. Roy. Soc. London, A466, 303329, doi:10.1098/rspa.2009.0519.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Masson, D., , and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

  • Meehl, G. A., , J. M. Arblaster, , J. T. Fasullo, , A. Hu, , and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., , J. J. Kennedy, , N. A. Rayner, , and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Özdoğan, M., , A. Robock, , and C. J. Kucharik, 2013: Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States. Climatic Change, 116, 373387, doi:10.1007/s10584-012-0518-1.

    • Search Google Scholar
    • Export Citation
  • Piani, C., , J. O. Haerter, , and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, doi:10.1007/s00704-009-0134-9.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2007: How reliable are climate models. Tellus, 59A, 229, doi:10.1111/j.1600-0870.2006.00211.x.

  • Räisänen, J., , and T. N. Palmer, 2001: A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Climate, 14, 32123226, doi:10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reifen, C., , and R. Toumi, 2009: Climate projections: Past performance no guarantee of future skill? Geophys. Res. Lett., 36, L13704, doi:10.1029/2009GL038082.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , S. Lewandowsky, , C. Langlais, , D. P. Monselesan, , T. J. O’Kane, , and N. Oreskes, 2014: Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4, 835840, doi:10.1038/nclimate2310.

    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., , X. Zeng, , and M. A. Brunke, 2012: The hindcast skill of the CMIP ensembles for the surface air temperature trend. J. Geophys. Res., 117, D16113, doi:10.1029/2012JD017765.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.

    • Search Google Scholar
    • Export Citation
  • Scheaffer, R. L., , and J. T. McClave, 1990: Probability and Statistics for Engineers. 3rd ed. Duxbury Press, 696 pp.

  • Scherrer, S. C., , C. Appenzeller, , M. A. Liniger, , and C. Schär, 2005: European temperature distribution changes in observations and climate change scenarios. Geophys. Res. Lett., 32, L19705, doi:10.1029/2005GL024108.

    • Search Google Scholar
    • Export Citation
  • Schneider, S. H., 2002: Can we estimate the likelihood of climatic scenarios at 2100? Climatic Change, 52, 441451, doi:10.1023/A:1014276210717.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2013: North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, doi:10.1175/JCLI-D-12-00592.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , K. H. Rosenlof, , R. W. Portmann, , J. S. Daniel, , S. M. Davis, , T. J. Sanford, , and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., , M. Collins, , J. C. Rougier, , and R. E. Chandler, 2012: Statistical problems in the probabilistic prediction of climate change. Environmetrics, 23, 364372, doi:10.1002/env.2153.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and et al. , 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.]

  • Stott, P., , P. Good, , G. Jones, , N. Gillett, , and E. Hawkins, 2013: The upper end of climate model temperature projections is inconsistent with past warming. Environ. Res. Lett., 8, 014024, doi:10.1088/1748-9326/8/1/014024.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., , A. Gobiet, , and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , F. J. Doblas-Reyes, , S. S. Drijfhout, , and E. Hawkins, 2013: Reliability of regional climate model trends. Environ. Res. Lett., 8, 014055, doi:10.1088/1748-9326/8/1/014055.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. Zwiers, 2013: Testing ensembles of climate change scenarios for “statistical significance.” Climatic Change, 117, 19, doi:10.1007/s10584-012-0551-0.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 59, Academic Press, 627 pp.

  • Yokohata, T., and et al. , 2013: Reliability and importance of structural diversity of climate model ensembles. Climate Dyn., 41, 2745–2763, doi:10.1007/s00382-013-1733-9.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , and A. Wang, 2012: What is monthly mean land surface air temperature? Eos Trans. Amer. Geophys. Union, 93, 156, doi:10.1029/2012EO150006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 8
PDF Downloads 13 13 5

Chances of Short-Term Cooling Estimated from a Selection of CMIP5-Based Climate Scenarios during 2006–35 over Canada

View More View Less
  • 1 Ouranos, and Centre pour l’Étude et la Simulation du Climat à l’Échelle Régionale, Université du Québec à Montréal, Montréal, Québec, Canada
  • | 2 Ouranos, Montréal, Québec, Canada
© Get Permissions
Restricted access

Abstract

The path toward a warmer global climate is not smooth, but, rather, is made up of a succession of positive and negative temperature trends, with cooling having more chance to occur the shorter the time scale considered. In this paper, estimates of the probabilities of short-term cooling (Pcool) during the period 2006–35 are performed for 5146 locations across Canada. Probabilities of cooling over durations from 5 to 25 yr come from an ensemble of 60 climate scenarios, based on three different methods using a gridded observational product and CMIP5 climate simulations. These methods treat interannual variability differently, and an analysis in hindcast mode suggests they are relatively reliable. Unsurprisingly, longer durations imply smaller Pcool values; in the case of annual temperatures, the interdecile range of Pcool values across Canada is, for example, ~2%–18% for 25 yr and ~40%–46% for 5 yr. Results vary slightly with the scenario design method, with similar geographical patterns emerging. With regards to seasonal influence, spring and winter are generally associated with higher Pcool values. Geographical Pcool patterns and their seasonality are explained in terms of the interannual variability over background trend ratio. This study emphasizes the importance of natural variability superimposed on anthropogenically forced long-term trends and the fact that regional and local short-term cooling trends are to be expected with nonnegligible probabilities.

Corresponding author address: Patrick Grenier, 550 Sherbrooke West Street, 19th Floor, Montreal QC H3A 1B9, Canada. E-mail: grenier.patrick@ouranos.ca

Abstract

The path toward a warmer global climate is not smooth, but, rather, is made up of a succession of positive and negative temperature trends, with cooling having more chance to occur the shorter the time scale considered. In this paper, estimates of the probabilities of short-term cooling (Pcool) during the period 2006–35 are performed for 5146 locations across Canada. Probabilities of cooling over durations from 5 to 25 yr come from an ensemble of 60 climate scenarios, based on three different methods using a gridded observational product and CMIP5 climate simulations. These methods treat interannual variability differently, and an analysis in hindcast mode suggests they are relatively reliable. Unsurprisingly, longer durations imply smaller Pcool values; in the case of annual temperatures, the interdecile range of Pcool values across Canada is, for example, ~2%–18% for 25 yr and ~40%–46% for 5 yr. Results vary slightly with the scenario design method, with similar geographical patterns emerging. With regards to seasonal influence, spring and winter are generally associated with higher Pcool values. Geographical Pcool patterns and their seasonality are explained in terms of the interannual variability over background trend ratio. This study emphasizes the importance of natural variability superimposed on anthropogenically forced long-term trends and the fact that regional and local short-term cooling trends are to be expected with nonnegligible probabilities.

Corresponding author address: Patrick Grenier, 550 Sherbrooke West Street, 19th Floor, Montreal QC H3A 1B9, Canada. E-mail: grenier.patrick@ouranos.ca
Save