• Barnett, T. P., , D. W. Pierce, , K. AchutaRao, , P. Gleckler, , B. D. Santer, , J. Gregory, , and W. Washington, 2005: Penetration of human-induced warming into the world’s oceans. Science, 309, 284287, doi:10.1126/science.1112418.

    • Search Google Scholar
    • Export Citation
  • Bhend, J., , and P. Whetton, 2013: Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Climatic Change, 118, 799–810, doi:10.1007/s10584-012-0691-2.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and et al. , 2014: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 867–952.

  • Christidis, N., , P. A. Stott, , F. W. Zwiers, , H. Shiogama, , and T. Nozawa, 2010: Probabilistic estimates of recent changes in temperature: A multi-scale attribution analysis. Climate Dyn., 34, 11391156, doi:10.1007/s00382-009-0615-7.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., , P. A. Stott, , F. W. Zwiers, , H. Shiogama, , and T. Nozawa, 2012: The contribution of anthropogenic forcings to regional changes in temperature during the last decade. Climate Dyn., 39, 12591274, doi:10.1007/s00382-011-1184-0.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., , and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, doi:10.1007/s00382-008-0448-9.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2009: The ocean’s role in continental climate variability and change. J. Climate, 22, 49394952, doi:10.1175/2009JCLI2778.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , A. M. Mestas-Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and et al. , 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2002: Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: Observations. Climate Dyn., 18, 675691, doi:10.1007/s00382-001-0204-x.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and et al. , 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, xxxx.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and et al. , 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Hoerling, M. P., , J. W. Hurrell, , and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092, doi:10.1126/science.1058582.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , M. P. Hoerling, , A. S. Phillips, , and T. Xu, 2004: Twentieth century North Atlantic climate change. Part I: Assessing determinism. Climate Dyn., 23, 371389, doi:10.1007/s00382-004-0432-y.

    • Search Google Scholar
    • Export Citation
  • Jones, G. S., , P. A. Stott, , and N. Christidis, 2008: Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J. Geophys. Res., 113, D02109, doi:10.1029/2007JD008914.

    • Search Google Scholar
    • Export Citation
  • Jones, G. S., , P. A. Stott, , and N. Christidis, 2013: Attribution of observed historical near surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos., 118, 4001–4024, doi:10.1002/jgrd.50239.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., , and Q. Wu, 2005: Detection of regional surface temperature trends. J. Climate, 18, 43374343, doi:10.1175/JCLI3565.1.

  • Kennedy, J. J., , N. A. Rayner, , R. Q. Smith, , M. Saunby, , and D. E. Parker, 2011: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , F. Zeng, , and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends. J. Climate, 26, 87098743, doi:10.1175/JCLI-D-12-00567.1.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., , and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., , J. T. Kent, , and J. M. Bibby, 1979: Multivariate Analysis. Academic Press, 521 pp.

  • Min, S., , and A. Hense, 2006: A Bayesian assessment of climate change using multimodel ensembles. Part I: Global mean surface temperature. J. Climate, 19, 32373256, doi:10.1175/JCLI3784.1.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and et al. , 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 659–740.

  • Pegion, P. J., , and A. Kumar, 2010: Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J. Climate, 23, 43274341, doi:10.1175/2010JCLI3295.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., , P. J. Gleckler, , T. P. Barnett, , B. D. Santer, , and P. J. Durack, 2012: The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett., 39, L21704, doi:10.1029/2012GL053389.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and et al. , 2008: Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353358, doi:10.1038/nature06937.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , L. Bengtsson, , and Z. Hu, 2003: Forcing of Northern Hemisphere climate trends. J. Atmos. Sci., 60, 15041521, doi:10.1175/1520-0469(2003)060<1504:FONHCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., , and P. D. Sardeshmukh, 2011: Critical influence of the pattern of tropical ocean warming on remote climate trends. Climate Dyn., 36, 15771591, doi:10.1007/s00382-009-0732-3.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and et al. , 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • van Oldenborgh, G. J., , F. J. Doblas Reyes, , S. S. Drijfhout, , and E. Hawkins, 2013: Reliability of regional climate model trends. Environ. Res. Lett.,8, 014055, doi:10.1088/1748-9326/8/1/014055.

  • Wu, Q., 2010: Associations of diurnal temperature range change with the leading climate variability modes during the Northern Hemisphere wintertime and their implication on the detection of regional climate trends. J. Geophys. Res., 115, D19101, doi:10.1029/2010JD014026.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., , and D. J. Karoly, 2007: Implications of changes in the atmospheric circulation on the detection of regional surface air temperature trends. Geophys. Res. Lett., 34, L08703, doi:10.1029/2006GL028502.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , F. W. Zwiers, , and P. A. Stott, 2006: Multi-model multi-signal climate change detection at regional scale. J. Climate, 19, 42944307, doi:10.1175/JCLI3851.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 6
PDF Downloads 19 19 2

Attributing Observed SST Trends and Subcontinental Land Warming to Anthropogenic Forcing during 1979–2005

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Attribution studies conclude that it is extremely likely that most observed global- and continental-scale surface air temperature (SAT) warming since 1950 was caused by anthropogenic forcing, but some difficulties and uncertainties remain in attribution of warming in subcontinental regions and at time scales less than 50 years. This study uses global observations and CMIP5 simulations with various forcings, covering 1979–2005, and control runs to develop confidence intervals, to attribute regional trends of SAT and sea surface temperature (SST) to natural and anthropogenic causes.

Observations show warming, significantly different from natural variations at the 95% confidence level, over one-third of all grid boxes, and averaged over 15 of 21 subcontinental regions and 6 of 10 ocean basins. Coupled simulations forced with all forcing factors, or greenhouse gases only, reproduce observed SST and SAT patterns. Uncoupled AMIP-like atmosphere-only (prescribed SST and atmospheric radiative forcing) simulations reproduce observed SAT patterns. All of these simulations produce consistent net downward longwave radiation patterns. Simulations with natural-only forcing simulate weak warming. Anthropogenic forcing effects are clearly detectable at the 5% significance level at global, hemispheric, and tropical scales and in nine ocean basins and 15 of 21 subcontinental land regions. Attribution results indicate that ocean warming during 1979–2005 for the globe and individual basins is well represented in the CMIP5 multimodel ensemble mean historical simulations. While land warming may occur as an indirect response to oceanic warming, increasing greenhouse gas concentrations tend to be the ultimate source of land warming in most subcontinental regions during 1979–2005.

Corresponding author address: Prof. Qigang Wu, School of Atmospheric Sciences, Nanjing University, Hankou Road #22, Nanjing, Jiangsu 210093, China. E-mail: qigangwu@nju.edu.cn

Abstract

Attribution studies conclude that it is extremely likely that most observed global- and continental-scale surface air temperature (SAT) warming since 1950 was caused by anthropogenic forcing, but some difficulties and uncertainties remain in attribution of warming in subcontinental regions and at time scales less than 50 years. This study uses global observations and CMIP5 simulations with various forcings, covering 1979–2005, and control runs to develop confidence intervals, to attribute regional trends of SAT and sea surface temperature (SST) to natural and anthropogenic causes.

Observations show warming, significantly different from natural variations at the 95% confidence level, over one-third of all grid boxes, and averaged over 15 of 21 subcontinental regions and 6 of 10 ocean basins. Coupled simulations forced with all forcing factors, or greenhouse gases only, reproduce observed SST and SAT patterns. Uncoupled AMIP-like atmosphere-only (prescribed SST and atmospheric radiative forcing) simulations reproduce observed SAT patterns. All of these simulations produce consistent net downward longwave radiation patterns. Simulations with natural-only forcing simulate weak warming. Anthropogenic forcing effects are clearly detectable at the 5% significance level at global, hemispheric, and tropical scales and in nine ocean basins and 15 of 21 subcontinental land regions. Attribution results indicate that ocean warming during 1979–2005 for the globe and individual basins is well represented in the CMIP5 multimodel ensemble mean historical simulations. While land warming may occur as an indirect response to oceanic warming, increasing greenhouse gas concentrations tend to be the ultimate source of land warming in most subcontinental regions during 1979–2005.

Corresponding author address: Prof. Qigang Wu, School of Atmospheric Sciences, Nanjing University, Hankou Road #22, Nanjing, Jiangsu 210093, China. E-mail: qigangwu@nju.edu.cn
Save