• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 487 pp.

  • Austin, J., 2002: A three-dimensional coupled chemistry–climate model simulation of past stratospheric trends. J. Atmos. Sci., 59, 218232, doi:10.1175/1520-0469(2002)059<0218:ATDCCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , and F. Li, 2006: On the relationship between the strength of the Brewer–Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33, L17807, doi:10.1029/2006GL026867.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , J. Wilson, , F. Li, , and H. Vömel, 2007: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry–climate model simulations. J. Atmos. Sci., 64, 905921, doi:10.1175/JAS3866.1.

    • Search Google Scholar
    • Export Citation
  • Birner, T., , and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer–Dobson circulation. Rev. Geophys., 52, 157–184, doi:10.1002/2013RG000448.

  • Butchart, N., , and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802, doi:10.1038/35071047.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and et al. , 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and et al. , 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, doi:10.1175/2010JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196, doi:10.1175/2009JAS3085.1.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , R. W. Spencer, , W. B. Norris, , W. D. Braswell, , and D. E. Parker, 2003: Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629, doi:10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, P. A., , and H. K. Roscoe, 2009: Variability and trends in stratospheric NO2 in Antarctic summer, and implications for stratospheric NOy. Atmos. Chem. Phys., 9, 36013612, doi:10.5194/acp-9-3601-2009.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London,236A, 187–193, doi:10.1098/rspa.1956.0127.

  • Dobson, G. M. B., , D. N. Harrison, , and J. Lawrence, 1929: Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc. Roy. Soc. London, 122A, 456486, doi:10.1098/rspa.1929.0034.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , R. S. Vose, , and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and et al. , 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831, doi:10.1038/ngeo388.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., , T. G. Shepherd, , and D. W. Waugh, Eds., 2010: SPARC report on the evaluation of chemistry–climate models. SPARC Rep. 5, WCRP-132, WMO/TD-1526, 434 pp. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/.]

  • Free, M., , D. J. Seidel, , J. K. Angell, , J. Lanzante, , I. Durre, , and T. C. Peterson, 2005: Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Solomon, , and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653, doi:10.5194/acp-10-2643-2010.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, doi:10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , D. R. Marsh, , D. E. Kinnison, , B. A. Boville, , and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Garny, H., , M. Dameris, , W. Randel, , G. E. Bodeker, , and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233, doi:10.1175/2011JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., , C. Tavolato, , and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, doi:10.1175/JCLI-D-11-00668.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere flux. Nat. Geosci., 2, 687691, doi:10.1038/ngeo604.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., , H. Hamada, , and K. Miyazaki, 2009: Comparisons of Brewer–Dobson circulations diagnosed from reanalyses. J. Meteor. Soc. Japan, 87, 9971006, doi:10.2151/jmsj.87.997.

    • Search Google Scholar
    • Export Citation
  • Li, F., , J. Austin, , and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21, 4057, doi:10.1175/2007JCLI1663.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., , and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res., 118, 7384, doi:10.1029/2012JD018813.

    • Search Google Scholar
    • Export Citation
  • Lin, P., , Q. Fu, , S. Solomon, , and J. M. Wallace, 2009: Temperature trend patterns in Southern Hemisphere high latitudes: Novel indicators of stratospheric change. J. Climate, 22, 63256341, doi:10.1175/2009JCLI2971.1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540, doi:10.1175/2008JCLI2679.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , and F. J. Wentz, 2009: Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 14931509, doi:10.1175/2009JTECHA1237.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J., 1988: Extension of explicit radiance observations by the Stratospheric Sounding Unit into the lower stratosphere and lower mesosphere. Quart. J. Roy. Meteor. Soc., 114, 11531171, doi:10.1002/qj.49711448213.

    • Search Google Scholar
    • Export Citation
  • Nash, J., , and G. F. Forrester, 1986: Long-term monitoring of stratospheric temperature trends using radiance measurements obtained by the TIROS-N series of NOAA spacecraft. Adv. Space Res., 6, 3744, doi:10.1016/0273-1177(86)90455-2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, doi:10.2151/jmsj.80.793.

  • Ramaswamy, V., and et al. , 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122, doi:10.1029/1999RG000065.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 1999: A stratospheric ozone trends data set for global modeling studies. Geophys. Res. Lett., 26, 30893092, doi:10.1029/1999GL900615.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and et al. , 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., and et al. , 2010: Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis. J. Geophys. Res., 115, D21304, doi:10.1029/2010JD014206.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , R. Suozzo, , N. K. Balachandran, , and M. J. Prather, 1990: Climate change and the middle atmosphere, Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475494, doi:10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, H. K., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, doi:10.1029/94JD03122.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , J. S. Boyle, , D. J. Gaffen, , J. J. Hnilo, , D. Nychka, , D. E. Parker, , and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 (D6), 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., , N. Butchard, , and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc.,138, 878–888, doi:10.1002/qj.966.

  • Shepherd, T. G., 2008: Dynamics, stratospheric ozone, and climate change. Atmos.–Ocean, 46, 117138, doi:10.3137/ao.460106.

  • Sherwood, S. C., , C. L. Meyer, , R. J. Allen, , and H. A. Titchner, 2008: Robust tropospheric warming revealed by iteratively homogenized radiosonde data. J. Climate, 21, 53365352, doi:10.1175/2008JCLI2320.1.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and et al. , 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588, doi:10.1256/qj.02.186.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., , J. J. Barnett, , and W. J. Randel, 2008: Temperature trends derived from Stratospheric Sounding Unit radiances: The effect of increasing CO2 on the weighting function. Geophys. Res. Lett., 35, L02710, doi:10.1029/2007GL032218.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , P. C. Siegmund, , E. Manzini, , and H. Kelder, 2004: A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling. J. Climate, 17, 23522367, doi:10.1175/1520-0442(2004)017<2352:ASOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys.,37, 275–316, doi:10.1029/1999RG900008.

  • Thompson, D. W. J., , and S. Solomon, 2009: Understanding recent stratospheric climate change. J. Climate, 22, 19341943, doi:10.1175/2008JCLI2482.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and et al. , 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, doi:10.1038/nature11579.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., , and J. M. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling and the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246, doi:10.1175/2009JAS3216.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , C.-Z. Zou, , and H. Qian, 2012: Construction of stratospheric temperature data records from stratospheric sounding units. J. Climate, 25, 29312946, doi:10.1175/JCLI-D-11-00350.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2011: Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, World Meteorological Organization, 511 pp.

  • WMO, 2012: Antarctic Ozone Bulletin. World Meteorological Organization. [Available online at http://www.wmo.int/pages/prog/arep/WMOAntarcticOzoneBulletins2012.html.]

  • Young, P. J., , D. W. J. Thompson, , K. H. Rosenlof, , S. Solomon, , and J.-F. Lamarque, 2011: The seasonal cycle and interannual variability in stratospheric temperatures and links to the Brewer–Dobson circulation: An analysis of MSU and SSU data. J. Climate, 24, 62436258, doi:10.1175/JCLI-D-10-05028.1.

    • Search Google Scholar
    • Export Citation
  • Young, P. J., , K. H. Rosenlof, , S. Solomon, , S. C. Sherwood, , Q. Fu, , and J.-F. Lamarque, 2012: Changes in stratospheric temperatures and their implications for changes in the Brewer–Dobson circulation, 1979–2005. J. Climate, 25, 17591772, doi:10.1175/2011JCLI4048.1.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , J. Holton, , and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , M. D. Goldberg, , Z. Cheng, , N. C. Grody, , J. T. Sullivan, , C. Cao, , and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, doi:10.1029/2005JD006798.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , H. Qian, , W. Wang, , L. Wang, , and C. Long, 2014: Recalibration and merging of SSU observations for stratospheric temperature trend studies. J. Geophys. Res. Atmos., 119,13 18013 205, doi:10.1002/2014JD021603.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 8
PDF Downloads 24 24 0

How Robust Are Trends in the Brewer–Dobson Circulation Derived from Observed Stratospheric Temperatures?

View More View Less
  • 1 Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain
  • | 2 Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Chemical Sciences Division, NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
  • | 4 Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain
© Get Permissions
Restricted access

Abstract

Most global circulation models and climate–chemistry models forced with increasing greenhouse gases predict a strengthening of the Brewer–Dobson circulation (BDC) in the twenty-first century, and some of them claim that such strengthening has already begun at the end of the twentieth century. However, observational evidence for such a trend remains inconclusive. The goal of this paper is to examine the evidence for observed trends in the stratospheric overturning circulation using a suite of currently available observational stratospheric temperature data. Trends are examined as “departures” from the global mean temperature, since such trends reflect the effects of dynamics and spatially inhomogeneous radiative forcing and are to first order independent of the direct radiative effects of increasing well-mixed greenhouse gas concentrations.

The primary conclusion of the study is that temperature observations do not reveal statistically significant trends in the Brewer–Dobson circulation over the period from 1979 to the present, as covered by Microwave Sounding Unit and Stratospheric Sounding Unit temperatures. The estimated trends in the BDC are weak in all datasets and not statistically significant at the 95% confidence level. In many cases, different data products yield very different results, particularly when the trends are stratified by season. Implications for the interpretation of recent stratospheric climate change are discussed. The results illustrate the essential need to better constrain the accuracy of future stratospheric temperature datasets.

Corresponding author address: Albert Ossó, Astronomy and Meteorology, University of Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain. E-mail: aosso@am.ub.es

Abstract

Most global circulation models and climate–chemistry models forced with increasing greenhouse gases predict a strengthening of the Brewer–Dobson circulation (BDC) in the twenty-first century, and some of them claim that such strengthening has already begun at the end of the twentieth century. However, observational evidence for such a trend remains inconclusive. The goal of this paper is to examine the evidence for observed trends in the stratospheric overturning circulation using a suite of currently available observational stratospheric temperature data. Trends are examined as “departures” from the global mean temperature, since such trends reflect the effects of dynamics and spatially inhomogeneous radiative forcing and are to first order independent of the direct radiative effects of increasing well-mixed greenhouse gas concentrations.

The primary conclusion of the study is that temperature observations do not reveal statistically significant trends in the Brewer–Dobson circulation over the period from 1979 to the present, as covered by Microwave Sounding Unit and Stratospheric Sounding Unit temperatures. The estimated trends in the BDC are weak in all datasets and not statistically significant at the 95% confidence level. In many cases, different data products yield very different results, particularly when the trends are stratified by season. Implications for the interpretation of recent stratospheric climate change are discussed. The results illustrate the essential need to better constrain the accuracy of future stratospheric temperature datasets.

Corresponding author address: Albert Ossó, Astronomy and Meteorology, University of Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain. E-mail: aosso@am.ub.es
Save