• Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrological cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., , Y. Shi, , W.-W. Tung, , R. J. Trapp, , X. Gao, , J. S. Pal, , and N. S. Diffenbaugh, 2009: Suppression of South Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett., 36, L01704, doi:10.1029/2008GL036500.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., , C. B. Skinner, , and N. S. Diffenbaugh, 2011: Influence of SST biases on future climate change projections. Climate Dyn., 36, 13031319, doi:10.1007/s00382-010-0875-2.

    • Search Google Scholar
    • Export Citation
  • Chaturvedi, R. K., , J. Joshi, , M. Jayaraman, , G. Bala, , and N. H. Ravindranath, 2012: Multi-model climate change projections for India under representative concentration pathways (RCPs): A preliminary analysis. Curr. Sci., 103, 791802.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., , A. Alessandri, , S. Masina, , and A. Navarra, 2011: Effects of increased CO2 levels on monsoons. Climate Dyn., 37, 83101, doi:10.1007/s00382-010-0801-7.

    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., , and S. Nandargi, 2003: Hydrometeorological aspects of floods in India. Nat. Hazards, 28, 133, doi:10.1023/A:1021199714487.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , R. D. Koster, , and Z. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 11771198, doi:10.1175/JHM532.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Y. Jin, , B. Singh, , and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829–849, doi:10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., , P. Kumar, , X. Z. Liang, , and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, doi:10.1175/JCLI3691.1.

    • Search Google Scholar
    • Export Citation
  • Endo, H., , and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041710, doi:10.1002/2013GL059158.

    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., , and C. H. Reick, 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, doi:10.5194/acp-13-5567-2013.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , V. Krishanmaurthy, , and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, doi:10.1002/qj.49712555412.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, S., , A. K. Sahai, , B. N. Goswami, , P. Terray, , S. Masson, , and J. J. Luo, 2012: Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Climate Dyn., 38, 15611576, doi:10.1007/s00382-011-1264-1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., , S. Yukimoto, , A. Noda, , and T. Motoi, 1997: Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J. Meteor. Soc. Japan, 75, 10191031.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., , H. Endo, , K. K. Kumar, , I. F. A. Cavalcanti, , P. Goswami, , and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, doi:10.1002/jgrd.50258.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., 2012: Weakening of Indian summer monsoon rainfall in warming environment. Theor. Appl. Climatol., 109, 447459, doi:10.1007/s00704-012-0591-4.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., , and K.-M. Kim, 2012: The 2010 Pakistan flood and Russian heatwave: Teleconnection of hydrometeorologic extremes. J. Hydrometeor., 13, 392403, doi:10.1175/JHM-D-11-016.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., , and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Li, C. F., , and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , N. C. Jourdain, , A. S. Taschetto, , C. C. Ummenhofer, , K. Ashok, , and A. Sen Gupta, 2012: Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models. Geophys. Res. Lett., 39, L20713, doi:10.1029/2012GL053322.

    • Search Google Scholar
    • Export Citation
  • May, W., 2002: Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys. Res. Lett., 29, 1118, doi:10.1029/2001GL013808.

    • Search Google Scholar
    • Export Citation
  • May, W., 2004: Potential future changes on the Indian summer monsoon due to greenhouse warming: Analysis of mechanisms in a global time-slice experiment. Climate Dyn., 22, 389414, doi:10.1007/s00382-003-0389-2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and J. M. Arblaster, 2003: Mechanisms for projected future changes in South Asian monsoon precipitation. Climate Dyn., 21, 659675, doi:10.1007/s00382-003-0343-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Moss, R. H., and et al. , 2010: The next generation of scenarios of climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Sabade, S., , A. Kulkarni, , and R. Kripalani, 2011: Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor. Appl. Climatol., 103, 543565, doi:10.1007/s00704-010-0296-5.

    • Search Google Scholar
    • Export Citation
  • Seth, A., , S. A. Rauscher, , M. Biasutti, , A. Giannini, , S. J. Camargo, , and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, doi:10.1175/JCLI-D-12-00726.1.

    • Search Google Scholar
    • Export Citation
  • Singh D., and et al. , 2015: Severe precipitation in northern India in June 2013: Causes, historical context, and changes in probability [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc.,95 (9), S58–S61.

  • Sperber, K. R., H. Annamalai, , I.-S. Kang, , A. Kitoh, , A. Moise, , A. Turner, , B. Wang, , and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., , and H. Annamalai, 2012: Climate change and the South Asian summer monsoon. Nat. Climate Change, 2, 587–595, doi:10.1038/nclimate1495.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., , P. M. Inness, , and J. M. Slingo, 2007: The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: Mean response and interannual variability. Quart. J. Roy. Meteor. Soc., 133, 11431157, doi:10.1002/qj.82.

    • Search Google Scholar
    • Export Citation
  • Ueda, H., , A. Iwai, , K. Kuwako, , and M. E. Hori, 2006: Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys. Res. Lett., 33, doi:10.1029/2005GL025336.

    • Search Google Scholar
    • Export Citation
  • Van der Ent, R. J., , O. A. Tuinenburg, , H.-R. Knoche, , H. Kunstmann, , and H. H. G. Savenije, 2013: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking? Hydrol. Earth Syst. Sci., 17, 48694884, doi:10.5194/hess-17-4869-2013.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magaña, , T. N. Palmer, , J. Shukla, , R. A. Tomas, , M. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., , and T.-C. Chen, 2005: Water vapor budget of the Indian monsoon depression. Tellus, 57A, 770782, doi:10.1111/j.1600-0870.2005.00145.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 14
PDF Downloads 22 22 7

Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

View More View Less
  • 1 Computer Science and Mathematics Division, and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
  • | 2 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 3 Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

This paper analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal) and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. The results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.

Denotes Open Access content.

Corresponding author address: Dr. Rui Mei, Oak Ridge National Laboratory, P.O. Box 2008 MS-6301, Oak Ridge, TN 37831-6301. E-mail: meir@ornl.gov

Publisher’s Note: This article was revised on 10 April 2015 to include the open access designation that was missing when originally published.

Abstract

This paper analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal) and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. The results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.

Denotes Open Access content.

Corresponding author address: Dr. Rui Mei, Oak Ridge National Laboratory, P.O. Box 2008 MS-6301, Oak Ridge, TN 37831-6301. E-mail: meir@ornl.gov

Publisher’s Note: This article was revised on 10 April 2015 to include the open access designation that was missing when originally published.

Save