• Arora, V. K., and et al. , 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett.,38, L05805, doi:10.1029/2010GL046270.

  • Bi, D., and et al. , 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Ocean J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , and W. R. Hobbs, 2013: Oceanography: Deep ocean freshening. Nat. Climate Change, 3, 864865, doi:10.1038/nclimate2014.

    • Search Google Scholar
    • Export Citation
  • Brix, H., , and R. Gerdes, 2003: North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation. J. Geophys. Res., 108, 3022, doi:10.1029/2002JC001335.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., , J. C. H. Chiang, , and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, doi:10.1175/JCLI-D-12-00496.1.

    • Search Google Scholar
    • Export Citation
  • Coles, V. J., , M. S. McCartney, , D. B. Olson, , and W. M. Smethie Jr., 1996: Changes in Antarctic Bottom Water properties in the western South Atlantic in the late 1980s. J. Geophys. Res., 101, 89578970, doi:10.1029/95JC03721.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2014: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Danabasoglu, G., , S. C. Bates, , B. P. Briegleb, , S. R. Jayne, , M. Jochum, , W. G. Large, , S. Peacock, , and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., , G. Madec, , A. S. Fisher, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res.,109, C12003, doi:10.1029/2004JC002378.

  • de Lavergne, C., , J. B. Palter, , E. D. Galbraith, , R. Bernardello, , and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, doi:10.1038/nclimate2132.

    • Search Google Scholar
    • Export Citation
  • Dickson, B., , I. Yashayaev, , J. Meincke, , B. Turrell, , S. Dye, , and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832837, doi:10.1038/416832a.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., , and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, doi:10.1175/JCLI-D-12-00504.1.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., , G. J. van Oldenborgh, , and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, doi:10.1175/JCLI-D-12-00490.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., , J. Le Sommer, , J. D. Zika, , M. Gehlen, , J. C. Orr, , P. Mathiot, , and B. Barnier, 2012: Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode. J. Climate, 25, 69586974, doi:10.1175/JCLI-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and et al. , 2012: GFDL’s ESM2 global coupled climate-carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Elliot, M., , L. Labeyrie, , and J. C. Duplessy, 2002: Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev., 21, 11531165, doi:10.1016/S0277-3791(01)00137-8.

    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., , M. Hoppema, , G. Rohardt, , M. Schröder, , and A. Wisotzki, 2004: Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54, 7791, doi:10.1007/s10236-003-0082-3.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2014: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fofonoff, N. P., , and R. C. Millard, 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Marine Science Tech. Paper 44, 58 pp.

  • Fogli, P. G., and et al. , 2009: INGV-CMCC carbon (ICC): A carbon cycle Earth system model. CMCC Research Paper 61, 31 pp.

  • Gordon, H. B., , S. P. O’Farrell, , M. A. Collier, , M. R. Dix, , L. D. Rotstayn, , E. A. Kowalczyk, , A. C. Hirst, , and I. G. Watterson, 2010: The CSIRO Mk3.5 climate model. CAWCR Tech. Rep. 21, 74 pp.

  • Griesel, A., , M. R. Mazloff, , and S. T. Gille, 2012: Mean dynamic topography in the Southern Ocean: Evaluating Antarctic Circumpolar Current transport. J. Geophys. Res.,117, C01020, doi:10.1029/2011JC007573.

  • Griffies, S. M., and et al. , 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., , O. Huhn, , D. Gomis, , and R. Timmermann, 2011: On the freshening of the northwestern Weddell Sea continental shelf. Ocean Sci., 7, 305316, doi:10.5194/os-7-305-2011.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., , K. J. Heywood, , D. P. Stevens, , and J. K. Ridley, 2013: Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett., 40, 14091414, doi:10.1002/grl.50287.

    • Search Google Scholar
    • Export Citation
  • Huussen, T. N., , A. C. Naveira-Garabato, , H. L. Bryden, , and E. L. McDonagh, 2012: Is the deep Indian Ocean MOC sustained by breaking internal waves? J. Geophys. Res.,117, C08024, doi:10.1029/2012JC008236.

  • Jahn, A., , and M. M. Holland, 2013: Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4 CMIP5 simulations. Geophys. Res. Lett., 40, 12061211, doi:10.1002/grl.50183.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., 2003: Ocean heat transport and its relationship to ocean circulation in the CMIP coupled models. Climate Dyn., 20, 153174, doi:10.1007/s00382-002-0261-9.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res.,113, C05027, doi:10.1029/2007JC004477.

  • Johnson, G. C., , S. Mecking, , B. M. Sloyan, , and S. E. Wijffels, 2007: Recent Bottom Water warming in the Pacific Ocean. J. Climate, 20, 53655375, doi:10.1175/2007JCLI1879.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and et al. , 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., , A. C. Naveira-Garabato, , M. P. Meredith, , P. R. Holland, , P. Courtois, , and B. A. King, 2013: Decadal freshening of the Antarctic Bottom Water exported from the Weddell Sea. J. Climate, 26, 81118125, doi:10.1175/JCLI-D-12-00765.1.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and et al. , 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, doi:10.1002/jame.20023.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1983: Deep convection in the world ocean. Rev. Geophys., 21, 126, doi:10.1029/RG021i001p00001.

  • Kuhlbrodt, T., , and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett.,39, L18608, doi:10.1029/2012GL052952.

  • Lee, M. M., , D. P. Marshall, , and R. G. Williams, 1997: On the eddy transfer of tracers: Advective or diffusive? J. Mar. Res., 55, 483505, doi:10.1357/0022240973224346.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , J. I. Antonov, , T. P. Boyer, , and C. Stephens, 2000: Warming of the world ocean. Science, 287, 22252229, doi:10.1126/science.287.5461.2225.

    • Search Google Scholar
    • Export Citation
  • Liu, H. L., , P. F. Lin, , Y. Q. Yu, , and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2.0. Acta Meteor. Sin., 26, 318329, doi:10.1007/s13351-012-0305-y.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and K. Speer, 2007: Global Ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Martin, T., , W. Park, , and M. Latif, 2013: Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Climate Dyn., 40, 20052022, doi:10.1007/s00382-012-1586-7.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., 2014: The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos. Trans. Roy. Soc.,372A, doi:10.1098/rsta.2013.0296.

  • Meijers, A. J. S., , E. Shuckburgh, , N. Bruneau, , J.-B. Sallée, , T. J. Bracegirdle, , and Z. Wang, 2012: Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res.,117, C12008, doi:10.1029/2012JC008412.

  • Mignot, J., , A. Ganopolski, , and A. Levermann, 2007: Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery. J. Climate, 20, 48844898, doi:10.1175/JCLI4280.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., , and D. J. McNeall, 2014: Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett.,9, 034016, doi:10.1088/1748-9326/9/3/034016.

  • Purkey, S. G., , and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, doi:10.1175/2010JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2007: Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific Oceans. Geophys. Res. Lett.,34, L06606, doi:10.1029/2006GL028550.

  • Rose, B. E., , K. C. Armour, , D. S. Battisti, , N. Feldl, , and D. D. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, doi:10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., , E. Shuckburgh, , N. Bruneau, , A. J. S. Meijers, , T. J. Bracegirdle, , Z. Wang, , and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18301844, doi:10.1002/jgrc.20135.

    • Search Google Scholar
    • Export Citation
  • Schleussner, C. F., , J. Runge, , J. Lehmann, , and A. Levermann, 2014: The role of the North Atlantic overturning and deep ocean for multi-decadal global-mean-temperature variability. Earth Syst. Dyn., 5, 103115, doi:10.5194/esd-5-103-2014.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, doi:10.1175/JCLI3612.1.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, doi:10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M., , M. Baringer, , H. Bryden, , S. Cunningham, , T. Delworth, , S. Lozier, , J. Marotzke, , and R. Sutton, 2012: Past, present, and future changes in the Atlantic meridional overturning circulation. Bull. Amer. Meteor. Soc., 93, 16631676, doi:10.1175/BAMS-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and et al. , Eds., 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Swingedouw, D., , T. Fichefet, , H. Goosse, , and M. F. Loutre, 2009: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33, 365381, doi:10.1007/s00382-008-0496-1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., , M. Bentsen, , C. Roelandt, , J. Schwinger, , and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, doi:10.5194/gmd-6-301-2013.

    • Search Google Scholar
    • Export Citation
  • Våge, K., and et al. , 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci., 2, 6772, doi:10.1038/ngeo382.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., , N. A. Dianskii, , and A. V. Gusev, 2010: Simulating present day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2013: On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J. Geophys. Res. Oceans, 118, 10701086, doi:10.1002/jgrc.20111.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and et al. , 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Xin, X. G., , T. W. Wu, , J. L. Li, , Z. Wang, , W. Li, , and F. Wu, 2013: How well does BCC-CSM1.1 reproduce the 20th century climate change over China. Atmos. Oceanic Sci. Lett., 1, 2126.

    • Search Google Scholar
    • Export Citation
  • Yin, J., , J. T. Overpeck, , S. M. Griffies, , A. Hu, , J. L. Russell, , and R. J. Stouffer, 2011: Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nat. Geosci., 4, 524528, doi:10.1038/ngeo1189.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 33
PDF Downloads 114 114 26

Changes in Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under Climate Change Scenarios

View More View Less
  • 1 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
  • | 2 Centre for Ocean and Atmospheric Sciences, School of Mathematics, University of East Anglia, Norwich, United Kingdom
  • | 3 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

Changes in bottom temperature, salinity, and density in the global ocean by 2100 for CMIP5 climate models are investigated for the climate change scenarios RCP4.5 and RCP8.5. The mean of 24 models shows a decrease in density in all deep basins, except the North Atlantic, which becomes denser. The individual model responses to climate change forcing are more complex: regarding temperature, the 24 models predict a warming of the bottom layer of the global ocean; in salinity, there is less agreement regarding the sign of the change, especially in the Southern Ocean. The magnitude and equatorward extent of these changes also vary strongly among models. The changes in properties can be linked with changes in the mean transport of key water masses. The Atlantic meridional overturning circulation weakens in most models and is directly linked to changes in bottom density in the North Atlantic. These changes are the result of the intrusion of modified Antarctic Bottom Water, made possible by the decrease in North Atlantic Deep Water formation. In the Indian, Pacific, and South Atlantic Oceans, changes in bottom density are congruent with the weakening in Antarctic Bottom Water transport through these basins. The authors argue that the greater the 1986–2005 meridional transports, the more changes have propagated equatorward by 2100. However, strong decreases in density over 100 yr of climate change cause a weakening of the transports. The speed at which these property changes reach the deep basins is critical for a correct assessment of the heat storage capacity of the oceans as well as for predictions of future sea level rise.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00381.s1.

Corresponding author address: Céline Heuzé, COAS, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. E-mail: c.heuze@uea.ac.uk

Abstract

Changes in bottom temperature, salinity, and density in the global ocean by 2100 for CMIP5 climate models are investigated for the climate change scenarios RCP4.5 and RCP8.5. The mean of 24 models shows a decrease in density in all deep basins, except the North Atlantic, which becomes denser. The individual model responses to climate change forcing are more complex: regarding temperature, the 24 models predict a warming of the bottom layer of the global ocean; in salinity, there is less agreement regarding the sign of the change, especially in the Southern Ocean. The magnitude and equatorward extent of these changes also vary strongly among models. The changes in properties can be linked with changes in the mean transport of key water masses. The Atlantic meridional overturning circulation weakens in most models and is directly linked to changes in bottom density in the North Atlantic. These changes are the result of the intrusion of modified Antarctic Bottom Water, made possible by the decrease in North Atlantic Deep Water formation. In the Indian, Pacific, and South Atlantic Oceans, changes in bottom density are congruent with the weakening in Antarctic Bottom Water transport through these basins. The authors argue that the greater the 1986–2005 meridional transports, the more changes have propagated equatorward by 2100. However, strong decreases in density over 100 yr of climate change cause a weakening of the transports. The speed at which these property changes reach the deep basins is critical for a correct assessment of the heat storage capacity of the oceans as well as for predictions of future sea level rise.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00381.s1.

Corresponding author address: Céline Heuzé, COAS, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. E-mail: c.heuze@uea.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 1.13 MB)
Save