• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Climate, 64, 23322354, doi: 10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Ching, L., , C.-H. Sui, , and M.-J. Yang, 2010: An analysis of multi-scale nature of tropical cyclone activities in June 2004: Climate background. J. Geophys. Res., 115, D24108, doi:10.1029/2010JD013803.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and et al. , 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, doi:10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity Simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864, doi:10.1175/1520-0469(2003)060<0847:MLCSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., , and L. R. Leung, 2011: Moist thermodynamics of the Madden–Julian oscillation in a cloud-resolving simulation. J. Climate, 24, 55715583, doi:10.1175/2011JCLI4212.1.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., , Z. Feng, , K. Landu, , and C. N. Long, 2014: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian oscillation. J. Adv. Model. Earth. Syst., 6, 938949, doi:10.1002/2014MS000335.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , G. Gu, , E. J. Nelkin, , K. P. Bowman, , E. F. Stocker, , and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbacg, , S. A. Rutledge, , R. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., , and S. Chen, 2014: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , J.-S. Kug, , and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., , C.-H. Ho, , H.-S. Kim, , C.-H. Sui, , and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, doi:10.1175/2007JCLI1493.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472, doi:10.1175/1520-0442(1997)010<0465:MOSTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and D. E. Waliser, 2005: Intraseasonal Variability in the Atmospheric-Ocean Climate System. Praxis, 436 pp.

  • Lau, K.-M., , and H.-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518, doi:10.1175/2009JCLI2920.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., , and P. J. Webster, 2002: The boreal summer intraseasonal oscillation and the South Asian monsoon. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , H. Hendon, , and J. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401411.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Climate, 29, 26652690, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J.-L. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves. Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical results. J. Atmos. Sci., 51, 18761894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., , and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., , and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , and K.-M. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430, doi:10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , K.-M. Lau, , Y. N. Takayabu, , and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655, doi:10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , K.-M. Lau, , and C.-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of moist Kelvin waves. J. Atmos. Sci., 45, 20512065, doi:10.1175/1520-0469(1988)045<2051:DOTLFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and T. Li, 1994: Convective interaction with boundary dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, doi:10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , A. Sobel, , F. Zhang, , Y. Sun, , Y. Yue, , and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, doi:10.1175/JCLI-D-14-00294.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423145, doi:10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of cloud and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yan, H.-M., , M. Zhong, , and Y.-Z. Zhu, 2004: Determination of the degree of freedom of digital filtered time series with an application to the correlation analysis between the length of day and the Southern Oscillation index. Chin. Astron. Astrophys., 28, 120126, doi:10.1016/S0275-1062(04)90014-8.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cluster from large-scale heat and moisture budget. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 3
PDF Downloads 22 22 2

Moistening Processes for Madden–Julian Oscillations during DYNAMO/CINDY

View More View Less
  • 1 Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan
  • | 2 International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Lower-tropospheric (1000–700 hPa) moistening processes of the two Madden–Julian oscillations (MJOs) over the Indian Ocean during Dynamics of the MJO (DYNAMO)/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (CINDY) are investigated by using soundings, operational assimilation, and satellite data. A scale-separated moisture budget is calculated at the sounding site by using time-decomposed wind and moisture fields. Each budget term is projected onto the intraseasonal moisture anomaly and its time tendency change. The projections and the corresponding temporal correlations are analyzed together with the temporal evolution of the budget terms to identify the dominant moistening process responsible for the MJO evolution. Results indicate that broad-scale advection by low-frequency and MJO flow and moisture fields are dominant moisture sources, while the residual of the moisture budget (−Q2) is a dominant sink contributing to the tendency term (propagation) and intraseasonal moisture anomaly (growth and decay). Dividing their life cycles into four phases (suppressed, cloud developing, convective, and decaying phases), the two MJOs exhibit different budget balances in the premoistening stage from the suppressed phase to the cloud-developing phase when low-frequency vertical motion is downward in MJO1 but upward in MJO2. The corresponding drying and moistening are balanced by negative Q2 (reevaporation in nonraining cloud) in MJO1 and positive Q2 in MJO2. The result implies that low-frequency flow (>60 days) can affect the initiation of MJOs. The premoistening in the lower troposphere by boundary layer moisture convergence leading the deep convection is observed but only in the cloud-developing phase to convective phase of the MJOs. Nonlinear moisture advection by synoptic disturbances always acts as a diffusive term. It is the dominant moisture source in the suppress phase of the two MJOs.

Corresponding author address: Chung-Hsiung Sui, Department of Atmospheric Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan. E-mail: sui@as.ntu.edu.tw

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Abstract

Lower-tropospheric (1000–700 hPa) moistening processes of the two Madden–Julian oscillations (MJOs) over the Indian Ocean during Dynamics of the MJO (DYNAMO)/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (CINDY) are investigated by using soundings, operational assimilation, and satellite data. A scale-separated moisture budget is calculated at the sounding site by using time-decomposed wind and moisture fields. Each budget term is projected onto the intraseasonal moisture anomaly and its time tendency change. The projections and the corresponding temporal correlations are analyzed together with the temporal evolution of the budget terms to identify the dominant moistening process responsible for the MJO evolution. Results indicate that broad-scale advection by low-frequency and MJO flow and moisture fields are dominant moisture sources, while the residual of the moisture budget (−Q2) is a dominant sink contributing to the tendency term (propagation) and intraseasonal moisture anomaly (growth and decay). Dividing their life cycles into four phases (suppressed, cloud developing, convective, and decaying phases), the two MJOs exhibit different budget balances in the premoistening stage from the suppressed phase to the cloud-developing phase when low-frequency vertical motion is downward in MJO1 but upward in MJO2. The corresponding drying and moistening are balanced by negative Q2 (reevaporation in nonraining cloud) in MJO1 and positive Q2 in MJO2. The result implies that low-frequency flow (>60 days) can affect the initiation of MJOs. The premoistening in the lower troposphere by boundary layer moisture convergence leading the deep convection is observed but only in the cloud-developing phase to convective phase of the MJOs. Nonlinear moisture advection by synoptic disturbances always acts as a diffusive term. It is the dominant moisture source in the suppress phase of the two MJOs.

Corresponding author address: Chung-Hsiung Sui, Department of Atmospheric Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan. E-mail: sui@as.ntu.edu.tw

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Save