• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and et al. , 2005: An A-Train strategy for quantifying direct climate forcing by anthropogenic aerosols. Bull. Amer. Meteor. Soc., 86, 17951809, doi:10.1175/BAMS-86-12-1795.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., , O. Boucher, , J. Haywood, , and M. S. Reddy, 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 11381141, doi:10.1038/nature04348.

    • Search Google Scholar
    • Export Citation
  • Bergamo, A., , A. M. Tafuro, , S. Kinne, , F. De Tomasi, , and M. R. Perrone, 2008: Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean from AERONET derived aerosol properties. Atmos. Chem. Phys. Discuss., 8, 12 76912 822, doi:10.5194/acpd-8-12769-2008.

    • Search Google Scholar
    • Export Citation
  • Blot, R., and et al. , 2013: Ultrafine sea spray aerosol over the southeastern Pacific: Open-ocean contributions to marine boundary layer CCN. Atmos. Chem. Phys., 13, 72637278, doi:10.5194/acp-13-7263-2013.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19,34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Chand, D., , R. Wood, , T. L. Anderson, , S. K. Satheesh, , and R. J. Charlson, 2009: Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nat. Geosci., 2, 181184, doi:10.1038/ngeo437.

    • Search Google Scholar
    • Export Citation
  • Chand, D., and et al. , 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, doi:10.1029/2012JD017894.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , G. Cesana, , J. L. Dufresne, , P. Minnis, , C. J. Stubenrauch, , and S. Zeng, 2010: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Chin, M., , R. A. Kahn, , and S. E. Schwartz, 2009: Atmospheric Aerosol Properties and Climate Impacts. DIANE Publishing, 115 pp.

  • Chung, C. E., , V. Ramanathan, , D. Kim, , and I. A. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res.,110, D24207, doi:10.1029/2005JD006356.

  • de Graaf, M., , L. G. Tilstra, , P. Wang, , and P. Stammes, 2012: Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry. J. Geophys. Res. Atmos.,117, D07207, doi:10.1029/2011JD017160.

  • Di Biagio, C., , A. di Sarra, , and D. Meloni, 2010: Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo. J. Geophys. Res.,115, D10209, doi:10.1029/2009JD012697.

  • Fu, Q., , and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , M. Sato, , and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 (D6), 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., 2003: The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res., 108, 8473, doi:10.1029/2002JD002226.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., , and T. S. L’Ecuyer, 2011: Level 2B fluxes and heating rates and 2B fluxes and heating rates with lidar process description and interface control document. JPL Tech. Doc., NASA, 28 pp. [Available online athttp://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-FLXHR-LIDAR_PDICD.P2_R04.20111220.pdf.]

  • Henderson, D. S., , T. S. L’Ecuyer, , G. Stephens, , P. Partain, , and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, doi:10.1175/JAMC-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., , P. K. Quinn, , T. S. Bates, , B. Alexander, , and J.-T. Lin, 2011: Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 31373157, doi:10.5194/acp-11-3137-2011.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and et al. , 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA A-Train satellite observations. J. Geophys. Res.,117, D14105, doi:10.1029/2011JD017237.

  • Kacenelenbogen, M., and et al. , 2014: An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America. J. Geophys. Res. Atmos., 119, 230244, doi:10.1002/2013JD020178.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., , O. Boucher, , D. Tanré, , M. Chin, , L. A. Remer, , and T. Takemura, 2005: Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett.,32, L17804, doi:10.1029/2005GL023125.

  • Kay, J. E., and et al. , 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, doi:10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Kittaka, C., , D. M. Winker, , M. A. Vaughan, , A. Omar, , and L. A. Remer, 2011: Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos. Meas. Tech.,4, 131–141, doi:10.5194/amt-4-131-2011.

  • Lamarque, J.-F., and et al. , 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179206, doi:10.5194/gmd-6-179-2013.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and J. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today,63, 36, doi:10.1063/1.3463626.

  • L’Ecuyer, T. S., , N. B. Wood, , T. Haladay, , G. L. Stephens, , and P. W. Stackhouse, 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and et al. , 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., , and N. Manalo-Smith, 2005: Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18,35063526, doi:10.1175/JCLI3504.1.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., , M. D. King, , S. Member, , S. Platnick, , and C. B. Schaaf, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158, doi:10.1109/TGRS.2004.838359.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., 2009: Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 325, 187190, doi:10.1126/science.1174461.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., , Y. Govaerts, , J. M. Haywood, , T. K. Berntsen, , and A. Lattanzio, 2005: Radiative effect of surface albedo change from biomass burning. Geophys. Res. Lett.,32, L20812, doi:10.1029/2005GL022897.

  • Myhre, G., and et al. , 2007: Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus, 59B, 115129, doi:10.1111/j.1600-0889.2006.00226.x.

    • Search Google Scholar
    • Export Citation
  • Neale, R., , and C. Chen, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp.

  • Omar, A. H., and et al. , 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 19942014, doi:10.1175/2009JTECHA1231.1.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and et al. , 2013: CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos., 118, 47484766, doi:10.1002/jgrd.50330.

    • Search Google Scholar
    • Export Citation
  • Patadia, F., , P. Gupta, , and S. A. Christopher, 2008: First observational estimates of global clear sky shortwave aerosol direct radiative effect over land. Geophys. Res. Lett.,35, L04810, doi:10.1029/2007GL032314.

  • Penner, J. E., 2003: Soot and smoke aerosol may not warm climate. J. Geophys. Res., 108, 4657, doi:10.1029/2003JD003409.

  • Quijano, A. L., , I. N. Sokolik, , and O. B. Toon, 2000: Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J. Geophys. Res., 105, 12 207–12 219, doi:10.1029/2000JD900047.

    • Search Google Scholar
    • Export Citation
  • Redemann, J., , M. A. Vaughan, , Q. Zhang, , Y. Shinozuka, , P. B. Russell, , J. M. Livingston, , M. Kacenelenbogen, , and L. A. Remer, 2012: The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmos. Chem. Phys., 12, 30253043, doi:10.5194/acp-12-3025-2012.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and et al. , 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., , and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev.,120, 303–325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

  • Sakaeda, N., , R. Wood, , and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res.,116, D12205, doi:10.1029/2010JD015540.

  • Satheesh, S., , and K. Krishna Moorthy, 2005: Radiative effects of natural aerosols: A review. Atmos. Environ., 39, 20892110, doi:10.1016/j.atmosenv.2004.12.029.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., and et al. , 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys., 6, 52255246, doi:10.5194/acp-6-5225-2006.

    • Search Google Scholar
    • Export Citation
  • Schuster, G. L., , M. Vaughan, , D. MacDonnell, , W. Su, , D. Winker, , O. Dubovik, , T. Lapyonok, , and C. Trepte, 2012: Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos. Chem. Phys., 12, 74317452, doi:10.5194/acp-12-7431-2012.

    • Search Google Scholar
    • Export Citation
  • Sheuyange, A., , G. Oba, , and R. B. Weladji, 2005: Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia. J. Environ. Manage., 75, 189198, doi:10.1016/j.jenvman.2004.11.004.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Soden, B., , A. Broccoli, , and R. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate,17, 3661–3665, doi:10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

  • Su, H., and et al. , 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res. Atmos., 118, 27622780, doi:10.1029/2012JD018575.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nakajima, , O. Dubovik, , B. N. Holben, , and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate,15, 333–352, doi:10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2.

  • Teixeira, J., and et al. , 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, doi:10.1175/2011JCLI3672.1.

    • Search Google Scholar
    • Export Citation
  • Torres, O., , A. Tanskanen, , B. Veihelmann, , C. Ahn, , R. Braak, , P. K. Bhartia, , P. Veefkind, , and P. Levelt, 2007: Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res., 112, D24S47, doi:10.1029/2007JD008809.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and et al. , 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050, doi:10.1175/2009JTECHA1228.1.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., , J. Riedi, , L. C. Labonnote, , P. Goloub, , B. Cairns, , J.-L. Deuzé, , and D. Tanré, 2009: Aerosol remote sensing over clouds using A-Train observations. J. Atmos. Sci., 66, 24682480, doi:10.1175/2009JAS3026.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , R. M. Eastman, , and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E., 2012: Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmos. Chem. Phys., 12,139149, doi:10.5194/acp-12-139-2012.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and et al. , 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Worley, P., , and A. Craig, 2012: Performance of the Community Earth System Model. Int. J. High Perform. Comput. Appl.,26, 17–30.

  • Yu, H., and et al. , 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613666, doi:10.5194/acp-6-613-2006.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 3
PDF Downloads 29 29 1

The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model

View More View Less
  • 1 University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 University of Colorado Boulder, Boulder, Colorado
  • | 3 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Observational benchmarks of global and regional aerosol direct radiative effects, over all surfaces and all sky conditions, are generated using CloudSat’s new multisensor radiative fluxes and heating rates product. Improving upon previous techniques, the approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties required for complete and accurate assessment of aerosol direct effects under all conditions. The global annually averaged aerosol direct radiative effect is estimated to be −1.9 W m−2 with an uncertainty range of ±0.6 W m−2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects. A series of regional analyses demonstrate that, in addition to previously documented biases in simulated aerosol distributions, the magnitude and sign of these discrepancies are often related to model biases in the geographic and seasonal distribution of clouds. A low bias in stratocumulus cloud cover over the southeastern Pacific, for example, leads to an overestimate of the radiative effects of marine aerosols in the region. Likewise, errors in the seasonal cycle of low clouds in the southeastern Atlantic distort the radiative effects of biomass burning aerosols from southern Africa. These findings indicate that accurate assessment of aerosol direct effects requires models to correctly represent not only the source, strength, and optical properties of aerosols, but their relative proximity to clouds as well.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alexander V. Matus, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53715. E-mail: amatus@wisc.edu

Abstract

Observational benchmarks of global and regional aerosol direct radiative effects, over all surfaces and all sky conditions, are generated using CloudSat’s new multisensor radiative fluxes and heating rates product. Improving upon previous techniques, the approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties required for complete and accurate assessment of aerosol direct effects under all conditions. The global annually averaged aerosol direct radiative effect is estimated to be −1.9 W m−2 with an uncertainty range of ±0.6 W m−2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects. A series of regional analyses demonstrate that, in addition to previously documented biases in simulated aerosol distributions, the magnitude and sign of these discrepancies are often related to model biases in the geographic and seasonal distribution of clouds. A low bias in stratocumulus cloud cover over the southeastern Pacific, for example, leads to an overestimate of the radiative effects of marine aerosols in the region. Likewise, errors in the seasonal cycle of low clouds in the southeastern Atlantic distort the radiative effects of biomass burning aerosols from southern Africa. These findings indicate that accurate assessment of aerosol direct effects requires models to correctly represent not only the source, strength, and optical properties of aerosols, but their relative proximity to clouds as well.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alexander V. Matus, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53715. E-mail: amatus@wisc.edu
Save