• An, S.-I., , and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, doi:10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, Q., and et al. , 2013: The Flexible Global Ocean–Atmosphere–Land System Model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Search Google Scholar
    • Export Citation
  • Bluman, A. G., 2007: Elementary Statistics. McGraw-Hill, 783 pp.

  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , B. Wang, , T. Li, , and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation—Frequency entrainment and chaos in a coupled ocean–atmosphere model. Geophys. Res. Lett., 21, 28172820, doi:10.1029/94GL02759.

    • Search Google Scholar
    • Export Citation
  • Chen, L., , Y. Yu, , and D. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 49474961, doi:10.1175/JCLI-D-12-00575.1.

    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., , and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361379, doi:10.1175/JCLI-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , G. A. Vecchi, , B. J. Soden, , B. P. Kirtman, , and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, doi:10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91, 141142, doi:10.1029/2010EO160001.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , G. A. Vecchi, , and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, doi:10.1175/JCLI-D-12-00531.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Fedorov, A. V., , and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101, doi:10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and et al. , 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, doi:10.1007/s00382-005-0084-6.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2000: Water vapor feedback and global warming 1. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , and T. Li, 2010: Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 37, L11702, doi:10.1029/2010GL043380.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , S. T. Kim, , and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, doi:10.1029/2006GL027221.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 15931607, doi:10.1007/s00382-010-0796-0.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 16091627, doi:10.1007/s00382-010-0872-5.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , W. Cai, , F.-F. Jin, , A. Santoso, , L. Wu, , E. Guilyardi, , and S.-I. An, 2014a: Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4, 786790, doi:10.1038/nclimate2326.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , W. Cai, , F.-F. Jin, , and J.-Y. Yu, 2014b: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 33133321, doi:10.1007/s00382-013-1833-6.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , S. Manabe, , and D. Gu, 1997: Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Climate, 10, 138161, doi:10.1175/1520-0442(1997)010<0138:SEIAGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and N. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, doi:10.1073/pnas.0710860105.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , A. Sterl, , E. Majer-Reimer, , and W. M. Junge, 1993: Climate variability in a coupled GCM. Part I: The tropical Pacific. J. Climate, 6, 521, doi:10.1175/1520-0442(1993)006<0005:CVIACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and et al. , 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14 37514 393, doi:10.1029/97JC03413.

    • Search Google Scholar
    • Export Citation
  • Li, L., and et al. , 2013: The Flexible Global Ocean–Atmosphere–Land System model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997a: Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 28722887, doi:10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., 1997b: Air–sea interactions of relevance to the ITCZ: The analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134147, doi:10.1175/1520-0469(1997)054<0134:ASIORT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., , and T. F. Hogan, 1999: The role of the annual mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J. Climate, 12, 780792, doi:10.1175/1520-0442(1999)012<0780:TROTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., , Y. Zhang, , E. Lu, , and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett.,29, 2110, doi:10.1029/2002GL015789.

  • Liu, H., , P. Lin, , Y. Yu, , and X. Zhang, 2012: The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2. Acta Meteor. Sin., 26, 318329, doi:10.1007/s13351-012-0305-y.

    • Search Google Scholar
    • Export Citation
  • Liu, L., , W. Yu, , and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, doi:10.1175/2011JCLI4041.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Luan, Y., , P. Braconnot, , Y. Yu, , W. Zheng, , and O. Marti, 2012: Early and mid-Holocene climate in the tropical Pacific: Seasonal cycle and interannual variability induced by insolation changes. Climate Past, 8, 10931108, doi:10.5194/cp-8-1093-2012.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., , and M. J. McPhaden, 2014: Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 25772587, doi:10.1175/JCLI-D-13-00438.1.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., , and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497, doi:10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , T. Lee, , and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , P. Gent, , J. M. Arblaster, , B. Otto-Bliesner, , E. Brady, , and A. Craig, 2001: Factors that affect amplitude of El Niño in global coupled climate models. Climate Dyn., 17, 515526, doi:10.1007/PL00007929.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Climate, 19, 40094027, doi:10.1175/JCLI3834.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1991: The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J. Atmos. Sci., 48, 584606, doi:10.1175/1520-0469(1991)048<0584:TSSSTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, W., , N. Keenlyside, , M. Latif, , A. Ströh, , R. Redler, , E. Roeckner, , and G. Madec, 2009: Tropical Pacific climate and its response to global warming in the Kiel climate model. J. Climate, 22, 7192, doi:10.1175/2008JCLI2261.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, Vol. 46, Academic Press, 293 pp.

  • Philip, S., , and G. J. Van Oldenborgh, 2006: Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett., 33, L11704, doi:10.1029/2006GL026196.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation–El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., , S. McGregor, , F.-F. Jin, , W. Cai, , M. H. England, , S.-I. An, , M. J. McPhaden, , and E. Guilyardi, 2013: Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature, 504, 126130, doi:10.1038/nature12683.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. B. Averyt, , M. Tignor, , and H. L. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Su, J., , R. Zhang, , T. Li, , X. Rong, , J. Kug, , and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, doi:10.1175/2009JCLI2894.1.

    • Search Google Scholar
    • Export Citation
  • Su, J., , T. Li, , and R. Zhang, 2014: The initiation and developing mechanisms of central Pacific El Niños. J. Climate, 27, 44734485, doi:10.1175/JCLI-D-13-00640.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., , Y. Yu, , and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 12871304, doi:10.1175/2008JCLI2267.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Van Oldenborgh, G. J., , S. Philip, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , A. Clement, , and B. J. Soden, 2008: Examining the tropical Pacific's response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 8183, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , E. M. Rasmusson, , T. P. Mitchell, , V. E. Kousky, , E. S. Sarachik, , and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, doi:10.1029/97JC02905.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and S. An, 2001: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 37093712, doi:10.1029/2001GL012862.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and S. An, 2002: A mechanism for decadal changes of ENSO behavior: Roles of background wind changes. Climate Dyn., 18, 475486, doi:10.1007/s00382-001-0189-5.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., , B. Wang, , and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, doi:10.1007/s00382-012-1427-8.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Climate, 20, 203217, doi:10.1175/JCLI4001.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , J. S. Kug, , B. Dewitte, , M. H. Kwon, , B. P. Kirtman, , and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., , Y. Adachi, , and M. Hosaka, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model for El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zelle, H., , G. J. van Oldenborgh, , G. Burgers, , and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18, 46694683, doi:10.1175/JCLI3574.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 84138421, doi:10.1175/JCLI-D-14-00346.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , and F.-F. Jin, 2012: Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys. Res. Lett., 39, L23704, doi:10.1029/2012GL053588.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , J. Li, , and F. F. Jin, 2009: Spatial and temporal features of ENSO meridional scales. Geophys. Res. Lett., 36, L15605, doi:10.1029/2009GL038672.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , F.-F. Jin, , J.-X. Zhao, , and J. Li, 2013: On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26, 31733186, doi:10.1175/JCLI-D-12-00347.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, W., , P. Braconnot, , E. Guilyardi, , U. Merkel, , and Y. Yu, 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30, 745762, doi:10.1007/s00382-007-0320-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 198 39
PDF Downloads 144 144 20

Causes of Strengthening and Weakening of ENSO Amplitude under Global Warming in Four CMIP5 Models

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China, and International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 2 International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Climate Dynamics Research Center, and Earth System Modeling Center, International Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The mechanisms for El Niño–Southern Oscillation (ENSO) amplitude change under global warming are investigated through quantitative assessment of air–sea feedback processes in present-day and future climate simulations of four models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two models (MPI-ESM-MR and MRI-CGCM3) project strengthened ENSO amplitude, whereas the other two models (CCSM4 and FGOALS-g2) project weakened ENSO amplitude. A mixed layer heat budget diagnosis shows that the major cause of the projected ENSO amplitude difference between the two groups is attributed to the changes of the thermocline and zonal advective feedbacks. A weaker (stronger) equatorial thermocline response to a unit anomalous zonal wind stress forcing in the Niño-4 region is found in CCSM4 and FGOALS-g2 (MPI-ESM-MR and MRI-CGCM3). The cause of the different response arises from the change in the meridional scale of ENSO. A narrower (wider) meridional width of sea surface temperature (SST) and zonal wind stress anomalies causes a strengthening (weakening) of the equatorial thermocline response and thus stronger Bjerknes and zonal advective feedbacks, as the subsurface temperature and zonal current anomalies depend on the thermocline response; consequently, the ENSO amplitude increases (decreases). The change of ENSO meridional width is caused by the change in mean meridional overturning circulation in the equatorial Pacific Ocean, which depends on change of mean wind stress and SST warming patterns under global warming.

School of Ocean and Earth Science and Technology Contribution Number 9285, International Pacific Research Center Contribution Number 1104, and Earth System Modeling Center Contribution Number 037.

Corresponding author address: Tim Li, IPRC and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, 1680 East West Rd., Post 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu

Abstract

The mechanisms for El Niño–Southern Oscillation (ENSO) amplitude change under global warming are investigated through quantitative assessment of air–sea feedback processes in present-day and future climate simulations of four models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two models (MPI-ESM-MR and MRI-CGCM3) project strengthened ENSO amplitude, whereas the other two models (CCSM4 and FGOALS-g2) project weakened ENSO amplitude. A mixed layer heat budget diagnosis shows that the major cause of the projected ENSO amplitude difference between the two groups is attributed to the changes of the thermocline and zonal advective feedbacks. A weaker (stronger) equatorial thermocline response to a unit anomalous zonal wind stress forcing in the Niño-4 region is found in CCSM4 and FGOALS-g2 (MPI-ESM-MR and MRI-CGCM3). The cause of the different response arises from the change in the meridional scale of ENSO. A narrower (wider) meridional width of sea surface temperature (SST) and zonal wind stress anomalies causes a strengthening (weakening) of the equatorial thermocline response and thus stronger Bjerknes and zonal advective feedbacks, as the subsurface temperature and zonal current anomalies depend on the thermocline response; consequently, the ENSO amplitude increases (decreases). The change of ENSO meridional width is caused by the change in mean meridional overturning circulation in the equatorial Pacific Ocean, which depends on change of mean wind stress and SST warming patterns under global warming.

School of Ocean and Earth Science and Technology Contribution Number 9285, International Pacific Research Center Contribution Number 1104, and Earth System Modeling Center Contribution Number 037.

Corresponding author address: Tim Li, IPRC and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, 1680 East West Rd., Post 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu
Save