• Archer, C. L., , and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Ashok K., , H. Nakamura, , and T. Yamagata, 2007: Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere cyclone-track activity during austral winter. J. Climate, 20, 31473163, doi:10.1175/JCLI4155.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G., , M. J. Reeder, , and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, doi:10.1029/2010GL046451.

    • Search Google Scholar
    • Export Citation
  • Bhaskaran, B., , and A. B. Mullan, 2003: El Niño-related variations in the southern Pacific atmospheric circulation: model versus observations. Climate Dyn., 20, 229239, doi:10.1007/s00382-002-0276-2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. P. Nicolas, , and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, doi:10.1175/2011JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. van Rensch, , T. Cowan, , and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res., 118, 10 79110 801, doi:10.1002/jgrd.50852.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , C. Jakob, , G. Berry, , and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, cited 2014: Typical impacts of warm (El Niño/Southern Oscillation—ENSO) and cold episodes. [Available online at http://www.cpc.noaa.gov/products/analysis_monitoring/impacts/enso.html.]

  • Cohen, J., , and M. Barlow, 2005: The NAO, the AO, and global warming: How closely related? J. Climate, 18, 44984513, doi:10.1175/JCLI3530.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2003: Warming trends in the Arctic from clear sky satellite observations. J. Climate, 16, 34983510, doi:10.1175/1520-0442(2003)016<3498:WTITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , J. E. Walsh, , and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, doi:10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., , and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, doi:10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gong, D., , and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Hakkinen, S., , A. Proshutinsky, , and I. Ashik, 2008: Sea ice drift in the Arctic since the 1950s. Geophys. Res. Lett., 35, L19704, doi:10.1029/2008GL034791.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., , and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., , R. W. Lee, , and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Hope, P., and et al. , 2014: A comparison of automated methods of front recognition for climate studies: A case study in southwest Western Australia. Mon. Wea. Rev., 142, 343363, doi:10.1175/MWR-D-12-00252.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 78, 2841, doi:10.1016/j.jmarsys.2008.11.026.

    • Search Google Scholar
    • Export Citation
  • Kriegsmann, A., , and B. Brümmer, 2014: Cyclone impact on sea ice in the central Arctic Ocean: a statistical study. Cryosphere, 8, 303317, doi:10.5194/tc-8-303-2014.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., , and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 reanalysis data in 1979–2001. J. Climate, 20, 26752690, doi:10.1175/JCLI4135.1.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., , and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, B., , I. Simmonds, , and I. N. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121, doi:10.1002/joc.1370.

    • Search Google Scholar
    • Export Citation
  • Miller, G. H., , S. J. Lehman, , K. A. Refsnider, , J. R. Southon, , and Y. Zhong, 2013: Unprecedented recent summer warmth in Arctic Canada. Geophys. Res. Lett., 40, 57455751, doi:10.1002/2013GL057188.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. W. Higgins, 1998: The Pacific–South American modes and the tropical intraseasonal oscillation. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and et al. , 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., , and D. H. Bromwich, 2011: Precipitation changes in high southern latitudes from global reanalyses: A cautionary tale. Surv. Geophys., 32, 475494, doi:10.1007/s10712-011-9114-6.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., , S. Pfahl, , I. Rudeva, , I. Simmonds, , H. Sodemann, , and H. Wernli, 2014: The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Climate, 27, 62056224, doi:10.1175/JCLI-D-13-00409.1.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., , I. Simmonds, , and J. A. Renwick, 2007: Southern Hemisphere cyclones and anticyclones: Recent trends and links with decadal variability in the Pacific Ocean. Int. J. Climatol., 27, 14031419, doi:10.1002/joc.1477.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., , T. Durrant, , I. Simmonds, , and I. Smith, 2008: Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and southern Australia rainfall. J. Climate, 21, 55665584, doi:10.1175/2008JCLI2128.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , T. Spangehl, , U. Ulbrich, , and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14, 823838, doi:10.1127/0941-2948/2005/0068.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., , P. M. Della-Marta, , C. Schwierz, , H. Wernli, , and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, doi:10.1175/2007MWR2143.1.

    • Search Google Scholar
    • Export Citation
  • Renard, R. J., , and L. C. Clarke, 1965: Experiments in numerical objective frontal analysis. Mon. Wea. Rev., 93, 547556, doi:10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., , I. Rudeva, , and I. Simmonds, 2015: Extratropical fronts in the lower troposphere—Global perspectives obtained from two automated methods. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.2471, in press.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , I. Simmonds, , and K. Keay, 2011: Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res., 116, D15105, doi:10.1029/2011JD015847.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979-2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2002: Surface fluxes of momentum and mechanical energy over the North Pacific and North Atlantic Oceans. Meteor. Atmos. Phys., 80, 118, doi:10.1007/s007030200009.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and J. C. King, 2004: Global and hemispheric climate variations affecting the Southern Ocean. Antarct. Sci., 16, 401413, doi:10.1017/S0954102004002226.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979-2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , C. Burke, , and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, doi:10.1175/2008JCLI2366.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , K. Keay, , and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, doi:10.1175/JCLI-D-11-00100.1.

    • Search Google Scholar
    • Export Citation
  • Solman, S. A., , and I. Orlanski, 2014: Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J. Atmos. Sci., 71, 539552, doi:10.1175/JAS-D-13-0105.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. M. Wallace, , and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tilinina, N., , S. K. Gulev, , I. Rudeva, , and P. Koltermann, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, doi:10.1175/JCLI-D-12-00777.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. J. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, doi:10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Zygmuntowska, M., , P. Rampal, , N. Ivanova, , and L. H. Smedsrud, 2014: Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. Cryosphere, 8, 705720, doi:10.5194/tc-8-705-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 11
PDF Downloads 56 56 9

Variability and Trends of Global Atmospheric Frontal Activity and Links with Large-Scale Modes of Variability

View More View Less
  • 1 School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia, and P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
  • | 2 School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Presented here is a global analysis of frontal activity variability derived from ERA-Interim data over the 34-yr period of January 1979–March 2013 using a state-of-the-art frontal tracking scheme. In December–February over that epoch, there is a northward shift of frontal activity in the Pacific in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the largest trends are identified in the austral summer and are manifested by a southward shift of frontal activity over the Southern Ocean.

Variability of frontal behavior is found to be closely related to the main modes of atmospheric circulation, such as the North Atlantic Oscillation (NAO) for the Atlantic–European sector in the NH and the southern annular mode (SAM) in the middle and high latitudes of the SH. A signal associated with El Niño and hence emanating from the tropics is also apparent in the behavior of frontal systems over the Pacific by a reduction in the number of fronts in the middle South Pacific and intensification of frontal activity in high and low latitudes throughout the year. It is shown in general that the associations of the large-scale modes with frontal variability are much stronger than with cyclones. This indicates that the quantification of the behavior of fronts is an important component of understanding the climate system. At the very high latitudes, it is also shown here that, in the recent years of rapid sea ice reduction in the Arctic, there have been fewer summer fronts observed over the Canadian Arctic.

Corresponding author address: Irina Rudeva, School of Earth Sciences, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: irina.rudeva@unimelb.edu.au

Abstract

Presented here is a global analysis of frontal activity variability derived from ERA-Interim data over the 34-yr period of January 1979–March 2013 using a state-of-the-art frontal tracking scheme. In December–February over that epoch, there is a northward shift of frontal activity in the Pacific in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the largest trends are identified in the austral summer and are manifested by a southward shift of frontal activity over the Southern Ocean.

Variability of frontal behavior is found to be closely related to the main modes of atmospheric circulation, such as the North Atlantic Oscillation (NAO) for the Atlantic–European sector in the NH and the southern annular mode (SAM) in the middle and high latitudes of the SH. A signal associated with El Niño and hence emanating from the tropics is also apparent in the behavior of frontal systems over the Pacific by a reduction in the number of fronts in the middle South Pacific and intensification of frontal activity in high and low latitudes throughout the year. It is shown in general that the associations of the large-scale modes with frontal variability are much stronger than with cyclones. This indicates that the quantification of the behavior of fronts is an important component of understanding the climate system. At the very high latitudes, it is also shown here that, in the recent years of rapid sea ice reduction in the Arctic, there have been fewer summer fronts observed over the Canadian Arctic.

Corresponding author address: Irina Rudeva, School of Earth Sciences, University of Melbourne, Melbourne VIC 3010, Australia. E-mail: irina.rudeva@unimelb.edu.au
Save