• Albrecht, B. A., , M. P. Jensen, , and W. J. Syrett, 1995: Marine boundary layer structure and fractional cloudiness. J. Geophys. Res., 100, 14 20914 222, doi:10.1029/95JD00827.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., , J. M. Gregory, , M. J. Webb, , and K. E. Taylor, 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys. Res. Lett., 39, L09712, doi:10.1029/2012GL051607.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641, doi:10.1175/1520-0469(1989)046<2621:CEOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and et al. , 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234–258, doi:10.1002/jame.20025.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, doi:10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , J.-L. Dufresne, , H. Le Treut, , J. J. Morcrette, , and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossey, , and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316–337, doi:10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback.” Science, 329, 277, doi:10.1126/science.1186796.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., , T. Zhang, , and S. A. Klein, 2013: CMIP5 subtropical cloud feedback interpreted through a mixed-layer model. J. Climate, 26, 16071625, doi:10.1175/JCLI-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , G. Cesana, , J. L. Dufresne, , P. Minnis, , C. J. Stubenrauch, , and S. Zeng, 2010: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., , G. G. Carrió, , G. L. Stephens, , and W. R. Cotton, 2013: Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci., 70, 31023118, doi:10.1175/JAS-D-12-0287.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Burgman, , and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and et al. , 2011: The Japanese 55-year reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338, 792794, doi:10.1126/science.1227465.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

    • Search Google Scholar
    • Export Citation
  • Garay, M. J., , S. P. de Szoeke, , and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113, D18204, doi:10.1029/2008JD009975.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, K., , and R. Bras, 1984: A hydrologically useful station precipitation model. 1. Formulation. Water Resour. Res., 20, 15851596, doi:10.1029/WR020i011p01585.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. P., 1991: Marine stratocumulus climatologies. Int. J. Climatol., 11, 147164, doi:10.1002/joc.3370110204.

  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , D. L. Hartmann, , and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , Y. Zhang, , M. D. Zelinka, , R. Pincus, , J. Boyle, , and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Lacagnina, C., , and F. Selten, 2013: A novel diagnostic technique to investigate cloud-controlling factors. J. Geophys. Res. Atmos., 118, 59795991, doi:10.1002/jgrd.50511.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and et al. , 2006: Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res., 111, D11S90, doi:10.1029/2005JD005921.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covery, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., , and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and et al. , 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382, doi:10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature, 1994. J. Climate, 7, 19151925, doi:10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878, doi:10.1175/JCLI3558.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and A. T. Evan, 2015: Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-14-00058.1, in press.

  • Park, S., , and C. B. Leovy, 2004: Marine low-cloud anomalies associated with ENSO. J. Climate, 17, 34483469, doi:10.1175/1520-0442(2004)017<3448:MLAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , S. Platnick, , S. A. Ackerman, , R. S. Hemler, , and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , A. Hall, , S. A. Klein, , and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 2603–2626, doi:10.1007/s00382-013-1945-z.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and et al. , 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Application. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., , and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M., , C. Leovy, , And S. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., , B. Stevens, , and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, doi:10.5194/acp-10-2377-2010.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , S. Bony, , and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, doi:10.1038/nature12829.

    • Search Google Scholar
    • Export Citation
  • Su, H., , J. H. Jiang, , C. Zhai, , T. J. Shen, , J. D. Neelin, , G. L. Stephens, , and Y. L. Yung, 2014: Weakening and strengthening structures in the Hadley circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res. Atmos., 119, 57875805, doi:10.1002/2014JD021642.

    • Search Google Scholar
    • Export Citation
  • Sun, F., , A. Hall, , and X. Qu, 2011: On the relationship between low cloud variability and lower tropospheric stability in the southeast Pacific. Atmos. Chem. Phys., 11, 90539065, doi:10.5194/acp-11-9053-2011.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and et al. , 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., , F. H. Lambert, , and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677–707, doi:10.1007/s00382-012-1336-x.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., , and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, doi:10.1175/JCLI3702.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052184.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., , M. D. Zelinka, , A. E. Dessler, , and P. Yang, 2013: An analysis of the short-term cloud feedback using MODIS data. J. Climate, 26, 48034815, doi:10.1175/JCLI-D-12-00547.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 10
PDF Downloads 45 45 19

On the Relationships between Subtropical Clouds and Meteorology in Observations and CMIP3 and CMIP5 Models

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Climate models’ simulation of clouds over the eastern subtropical oceans contributes to large uncertainties in projected cloud feedback to global warming. Here, interannual relationships of cloud radiative effect and cloud fraction to meteorological variables are examined in observations and in models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively). In observations, cooler sea surface temperature, a stronger estimated temperature inversion, and colder horizontal surface temperature advection are each associated with larger low-level cloud fraction and increased reflected shortwave radiation. A moister free troposphere and weaker subsidence are each associated with larger mid- and high-level cloud fraction and offsetting components of shortwave and longwave cloud radiative effect. It is found that a larger percentage of CMIP5 than CMIP3 models simulate the wrong sign or magnitude of the relationship of shortwave cloud radiative effect to sea surface temperature and estimated inversion strength. Furthermore, most models fail to produce the sign of the relationship between shortwave cloud radiative effect and temperature advection. These deficiencies are mostly, but not exclusively, attributable to errors in the relationship between low-level cloud fraction and meteorology. Poor model performance also arises due to errors in the response of mid- and high-level cloud fraction to variations in meteorology. Models exhibiting relationships closest to observations tend to project less solar reflection by clouds in the late twenty-first century and have higher climate sensitivities than poorer-performing models. Nevertheless, the intermodel spread of climate sensitivity is large even among these realistic models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00475.s1.

Corresponding author address: Timothy A. Myers, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0208, La Jolla, CA 92093. E-mail: tamyers@ucsd.edu

Abstract

Climate models’ simulation of clouds over the eastern subtropical oceans contributes to large uncertainties in projected cloud feedback to global warming. Here, interannual relationships of cloud radiative effect and cloud fraction to meteorological variables are examined in observations and in models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively). In observations, cooler sea surface temperature, a stronger estimated temperature inversion, and colder horizontal surface temperature advection are each associated with larger low-level cloud fraction and increased reflected shortwave radiation. A moister free troposphere and weaker subsidence are each associated with larger mid- and high-level cloud fraction and offsetting components of shortwave and longwave cloud radiative effect. It is found that a larger percentage of CMIP5 than CMIP3 models simulate the wrong sign or magnitude of the relationship of shortwave cloud radiative effect to sea surface temperature and estimated inversion strength. Furthermore, most models fail to produce the sign of the relationship between shortwave cloud radiative effect and temperature advection. These deficiencies are mostly, but not exclusively, attributable to errors in the relationship between low-level cloud fraction and meteorology. Poor model performance also arises due to errors in the response of mid- and high-level cloud fraction to variations in meteorology. Models exhibiting relationships closest to observations tend to project less solar reflection by clouds in the late twenty-first century and have higher climate sensitivities than poorer-performing models. Nevertheless, the intermodel spread of climate sensitivity is large even among these realistic models.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00475.s1.

Corresponding author address: Timothy A. Myers, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0208, La Jolla, CA 92093. E-mail: tamyers@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 753.57 KB)
Save