• Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N. C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., and et al. , 2001: Is there an Indian Ocean dipole, and is it independent of the El Niño–Southern Oscillation? CLIVAR Exchanges, No. 6, International CLIVAR Project Office, Southampton, United Kingdom, 18–22.

  • Anderson, D., 1999: Extremes in the Indian Ocean. Nature, 401, 337339, doi:10.1038/43807.

  • Annamalai, H., , R. Murtugudde, , J. Potemra, , S. P. Xie, , P. Liu, , and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res., 50B, 23052330, doi:10.1016/s0967-0645(03)00058-4.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , Z. Guan, , and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, doi:10.1029/2001GL013294.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , Z. Guan, , and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, doi:10.2151/jmsj.81.41.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., , R. Krishnan, , and T. Yamagata, 1999: Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 30013004, doi:10.1029/1999GL010434.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., , J.-J. Luo, , S. Masson, , P. Delecluse, , S. Gualdi, , A. Navarra, , and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, doi:10.1175/JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., , J.-J. Luo, , S. Masson, , S. A. Rao, , H. Sakuma, , and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, doi:10.1175/JCLI3797.1.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., , J.-J. Luo, , and T. Yamagata, 2008: Unusual IOD event of 2007. Geophys. Res. Lett., 35, L14S11, doi:10.1029/2008GL034122.

  • Bellenger, H., , E. Guilyardi, , J. Leloup, , M. Lengaigne, , and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Black, E., , J. Slingo, , and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, doi:10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., , F. Kucharski, , F. Molteni, , W. Hazeleger, , and C. Severijns, 2005: Internal and forced modes of variability in the Indian Ocean. Geophys. Res. Lett., 32, L12707, doi:10.1029/2005GL023154.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., , H. F. Diaz, , G. N. Kiladis, , and J. K. Eischeid, 1987: ENSO signal in continental temperature and precipitation records. Nature, 327, 497501, doi:10.1038/327497a0.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , T. Cowan, , and M. Raupach, 2009a: Positive Indian Ocean dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , T. Cowan, , and A. Sullivan, 2009b: Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705, doi:10.1029/2009GL037604.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. van Rensch, , T. Cowan, , and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , P. van Rensch, , T. Cowan, , and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, doi:10.1175/JCLI-D-11-00501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , X.-T. Zheng, , E. Weller, , M. Collins, , T. Cowan, , M. Lengaigne, , W. D. Yu, , and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci., 6, 9991007, doi:10.1038/ngeo2009.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , and C. Gnanaseelan, 2007: Basinwide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol., 27, 14211428, doi:10.1002/joc.1482.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., , S. Gualdi, , and A. Navarra, 2007: A diagnostic study of the Indian Ocean dipole mode in El Niño and non–El Niño years. J. Climate, 20, 29612977, doi:10.1175/JCLI4153.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , G. Huang, , and K.-M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , W. Cai, , and Y. Wu, 2013a: A new type of the Indian Ocean dipole since the mid-1970s. J. Climate, 26, 959972, doi:10.1175/JCLI-D-12-00047.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , Y.-L. Yang, , X.-T. Zheng, , L. Liu, , and G. Huang, 2013b: Indian Ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 72407266, doi:10.1175/JCLI-D-12-00678.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , C. Boening, , F. W. Landerer, , and R. S. Nerem, 2013: Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett., 40, 43684373, doi:10.1002/grl.50834.

    • Search Google Scholar
    • Export Citation
  • Fischer, A., , P. Terray, , E. Guilyardi, , S. Gualdi, , and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, doi:10.1175/JCLI3478.1.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Guilyardi, , A. Navarra, , S. Masina, , and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567582.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and et al. , 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 29–32.

  • Guo, F., , Q. Liu, , X.-T. Zheng, , and S. Sun, 2013: The role of barrier layer in southeastern Arabian Sea during the development of positive Indian Ocean Dipole events. J. Ocean Univ. China, 12, 245252, doi:10.1007/s11802-013-2170-4.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , M.-M. Lu, , and M. Kanamitsu, 2008a: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, doi:10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , T. Li, , and J.-J. Luo, 2008b: Asymmetry of the Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21, 48494858, doi:10.1175/2008JCLI2223.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , T. Li, , LinHo, , and Y.-C. Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576, doi:10.1175/2010JCLI3320.1.

    • Search Google Scholar
    • Export Citation
  • Hong, X., , H. Hu, , X. Yang, , Y. Zhang, , G. Liu, , and W. Liu, 2014: Influences of Indian Ocean interannual variability on different stages of El Niño: A FOAM1.5 model approach. Sci. China: Earth Sci., 57, 26162627, doi:10.1007/s11430-014-4932-2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., , and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, doi:10.1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and et al. , 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, doi:10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Klein, S. A., , B. J. Soden, , and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific Sector during ENSO episodes. J. Climate,16, 3–20, doi:10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

  • Li, G., , and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , S.-P. Xie, , and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 35083072, doi:10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., , B. Wang, , C.-P. Chang, , and Y. Zang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 21192135, doi:10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, L., , S.-P. Xie, , X.-T. Zheng, , T. Li, , Y. Du, , G. Huang, , and W.-D. Yu, 2014: Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Climate Dyn., 43, 17151730, doi:10.1007/s00382-013-2000-9.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , F. Guo, , and X.-T. Zheng, 2013: Relationships of interannual variability between the equatorial Pacific and tropical Indian Ocean in 17 CMIP5 models. J. Ocean Univ. China, 12, 237244, doi:10.1007/s11802-013-2195-8.

    • Search Google Scholar
    • Export Citation
  • Loschnigg, J., , G. Meehl, , P. Webster, , J. Arblaster, , and G. Compo, 2003: The Asian monsoon, the tropical biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16, 16171642, doi:10.1175/1520-0442(2003)016<1617:TAMTTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J. Climate, 16, 21382158, doi:10.1175/2767.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, G. A., , P. C. McIntosh, , L. Pigot, , and M. J. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, doi:10.1175/JCLI4152.1.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., , J. P. McCreary Jr., , and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J. Geophys. Res., 105, 32953306, doi:10.1029/1999JC900294.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Privalsky, V. E., , and D. T. Jensen, 1995: Assessment of the influence of ENSO on annual global air temperatures. Dyn. Atmos. Oceans, 22, 161178, doi:10.1016/0377-0265(94)00400-Q.

    • Search Google Scholar
    • Export Citation
  • Rao, J., , and R.-C. Ren, 2014: Statistical characteristics of ENSO events in CMIP5 models. Atmos. Oceanic Sci. Lett., 7, 546552, doi:10.3878/AOSL20140055.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., , and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39, 103135, doi:10.1016/j.dynatmoce.2004.10.014.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., , S. K. Behera, , Y. Masumoto, , and T. Yamagata, 2002: Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res. II, 49, 15491572, doi:10.1016/S0967-0645(01)00158-8.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, doi:10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , S.-P. Xie, , and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 43974417, doi:10.1175/JCLI3847.1.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., , S.-P. Xie, , and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , M. A. Alexander, , and H. H. Hendon, 2004a: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17, 362372, doi:10.1175/1520-0442(2004)017<0362:RROTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , H. H. Hendon, , and M. A. Alexander, 2004b: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res. I, 51, 619635, doi:10.1016/j.dsr.2004.01.005.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., , R. T. Sutton, , J. M. Slingo, , M. Roberts, , and E. Black, 2005: Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Climate, 18, 22862307, doi:10.1175/JCLI3410.1.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., , A. Sen Gupta, , N. Jourdain, , A. Santoso, , C. C. Ummenhofer, , and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 28612885, doi:10.1175/JCLI-D-13-00437.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terray, P., , F. Chauvin, , and H. Douville, 2007: Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon–ENSO–dipole variability in a coupled ocean–atmosphere model. Climate Dyn., 28, 553580, doi:10.1007/s00382-006-0192-y.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , G. W. Branstator, , D. Karoly, , A. Kumar, , N.-C. Lau, , and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., , N. H. Saji, , and T. Yamagata, 1999: Response of the equatorial Indian Ocean to an anomalous wind event during 1994. Geophys. Res. Lett., 26, 16131616, doi:10.1029/1999GL900179.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , A. M. Moore, , J. P. Loschnigg, , and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , B. P. Kirtman, , and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Du, , G. Huang, , X.-T. Zheng, , H. Tokinaga, , K. Hu, , and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, doi:10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., , S. K. Behera, , S. A. Rao, , Z. Guan, , K. Ashok, , and H. N. Saji, 2003: Comments on “Dipoles, temperature gradient, and tropical climate anomalies.” Bull. Amer. Meteor. Soc., 84, 14181422, doi:10.1175/BAMS-84-10-1418.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., , S. K. Behera, , J.-J. Luo, , S. Masson, , M. Jury, , and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189– 212.

  • Yang, J., , Q. Liu, , S.-P. Xie, , Z. Liu, , and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , Q. Liu, , and Z. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, doi:10.1175/2010JCLI2962.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2003: Variability of the depth of the 20°C isotherm along 6°N in the Bay of Bengal: Its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Res. II, 50, 22852304, doi:10.1016/S0967-0645(03)00057-2.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and M. M. Rienecker, 2000: Indian Ocean warming of 1997–1998. J. Geophys. Res., 105, 16 92316 939, doi:10.1029/2000JC900068.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., , S.-P. Xie, , G. A. Vecchi, , Q. Liu, , and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 12401253, doi:10.1175/2009JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., , S.-P. Xie, , Y. Du, , L. Liu, , G. Huang, , and Q. Liu, 2013: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Climate, 26, 60676080, doi:10.1175/JCLI-D-12-00638.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., , H. H. Hendon, , and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 36343649, doi:10.1175/JCLI3493.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., , S.-P. Xie, , X.-T. Zheng, , Q. Liu, , and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 24
PDF Downloads 108 108 15

Three Types of Indian Ocean Dipoles

View More View Less
  • 1 Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China, Qingdao, China, and NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Key Laboratory of Ocean–Atmosphere Interaction and Climate in Universities of Shandong, Ocean University of China, Qingdao, China
  • | 3 NOAA Earth System Research Laboratory, Boulder, Colorado
  • | 4 Key Laboratory of Meteorological Disaster Preventing and Reducing in Ningxia, Ningxia Institute of Meteorological Science, Yinchuan, China, and NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Using observational data and phase 5 of the Coupled Model Intercomparison Project (CMIP5) model outputs [the preindustrial (PI) control run of the Community Climate System Model, version 4 (CCSM4) and historical simulations of 17 CMIP5 models], Indian Ocean dipoles (IODs) with a peak in fall are categorized into three types. The first type is closely related to the development phase of El Niño/La Niña. The second type evolves from the basinwide warming (cooling) in the tropical Indian Ocean (IO), usually occurring in the year following El Niño (La Niña). The third type is independent of El Niño and La Niña. The dominant trigger condition for the first (third) type of IOD is the anomalous Walker circulation (anomalous cross-equatorial flow); the anomalous zonal sea surface temperature (SST) gradient in the tropical IO is the trigger condition for the second type. The occurrence of anomalous ocean Rossby waves during the forming stage of IO basinwide mode and their effect on SST in the southwestern IO during winter and spring are critical for early development of the second type of IOD. Although most models simulate a stronger El Niño–Southern Oscillation and IOD compared to the observations, this does not influence the phase-locking and classification of the IOD peaking in the fall.

Corresponding author address: Qinyu Liu, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China, 266100. E-mail: liuqyouc@gmail.com

Abstract

Using observational data and phase 5 of the Coupled Model Intercomparison Project (CMIP5) model outputs [the preindustrial (PI) control run of the Community Climate System Model, version 4 (CCSM4) and historical simulations of 17 CMIP5 models], Indian Ocean dipoles (IODs) with a peak in fall are categorized into three types. The first type is closely related to the development phase of El Niño/La Niña. The second type evolves from the basinwide warming (cooling) in the tropical Indian Ocean (IO), usually occurring in the year following El Niño (La Niña). The third type is independent of El Niño and La Niña. The dominant trigger condition for the first (third) type of IOD is the anomalous Walker circulation (anomalous cross-equatorial flow); the anomalous zonal sea surface temperature (SST) gradient in the tropical IO is the trigger condition for the second type. The occurrence of anomalous ocean Rossby waves during the forming stage of IO basinwide mode and their effect on SST in the southwestern IO during winter and spring are critical for early development of the second type of IOD. Although most models simulate a stronger El Niño–Southern Oscillation and IOD compared to the observations, this does not influence the phase-locking and classification of the IOD peaking in the fall.

Corresponding author address: Qinyu Liu, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China, 266100. E-mail: liuqyouc@gmail.com
Save