• Biondi, F., , A. Gershunov, , and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 510, doi:10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., , B. Soden, , B. J. Sohn, , and L. Shi, 2014: Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl. Acad. Sci.,111, 11 636–11 641, doi:10.1073/pnas.1409659111.

  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, L., , and T. Zhou, 2014: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos., 119, 11 272–11 287, doi:10.1002/2013JD021395.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Gastineau, G., , L. Li, , and H. Le Treut, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22, 39934013, doi:10.1175/2009JCLI2794.1.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., 1985: Statistical weather forecasting. Probability, Statistics, and Decision Making in Atmospheric Sciences, A. H. Murphy and R. W. Katz, Eds., Westview Press, 545 pp.

  • Hansen, J., , M. Sato, , R. Ruedy, , K. Lo, , D. W. Lea, , and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci., 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and et al. , 2014: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Held, I., , and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Kagan, R. L., 1979: Averaging Meteorological Fields. Gidrometeoizdat, 212 pp.

  • Kennedy, J. J., , N. A. Rayner, , R. O. Smith, , M. Saunby, , and D. E. Parker, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., , N. A. Rayner, , R. O. Smith, , M. Saunby, , and D. E. Parker, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., , and A. S. Jones, 2007: A blended satellite total precipitable water product for operational forecasting. J. Atmos. Oceanic Technol., 24, 7481, doi:10.1175/JTECH1960.1.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, doi:10.1073/pnas.0710860105.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , S. Lee, , and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Li, H., , and B. D. Chen, 2005: The evolution of precipitable water associated with the Asian and Australian monsoons as revealed from MODIS/SSMI, ECMWF and NCEP reanalysis data sets. Geophys. Res. Lett., 32, L10811, doi:10.1029/2005GL022570.

    • Search Google Scholar
    • Export Citation
  • Lin, R., , T. Zhou, , and Y. Qian, 2014: Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Climate, 27, 12711289, doi:10.1175/JCLI-D-13-00215.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , T. Zhou, , Y. Zhu, , and Y. Lin, 2012: The strengthening East Asia summer monsoon since the early 1990s. Chin. Sci. Bull., 57, 15531558, doi:10.1007/s11434-012-4991-8.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , B. D. Santer, , F. J. Wentz, , K. E. Taylor, , and M. F. Wehner, 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., , and G. W. Brier, 1958: Some Applications of Statistics to Meteorology. Pennsylvania State University Press, 224 pp.

  • Remote Sensing Systems, cited 2014: Monthly mean total precipitable water 1-deg monthly climate product. Version-7 release-0 TPW CDR, Remote Sensing Systems, Santa Rosa, CA. [Available online at http://www.remss.com/measurements/atmospheric-water-vapor/tpw-1-deg-product.]

  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandeep, S., , F. Stordal, , P. D. Sardeshmukh, , and G. P. Compo, 2014: Pacific Walker Circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103–117, doi:10.1007/s00382-014-2135-3.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , and C. F. Ropelewski, 1994: Optimal averaging of seasonal sea surface temperatures and associated confidence intervals (1860–1989). J. Climate, 7, 949964, doi:10.1175/1520-0442(1994)007<0949:OAOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , R. E. Livezey, , and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. E. Livezey, , and S. S. P. Shen, 1998: An improved method for analyzing sparse and irregularly distributed SST data on a regular grid: The tropical Pacific Ocean. J. Climate, 11, 17171729, doi:10.1175/1520-0442(1998)011<1717:AIMFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over oceans and sea surface temperature. J. Climate, 3, 634645, doi:10.1175/1520-0442(1990)003<0634:OTRBWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sudradjat, A., , R. R. Ferraro, , and M. Fiorino, 2005: A comparison of total precipitable water between reanalyses and NVAP. J. Climate, 18, 17901807, doi:10.1175/JCLI3379.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Trenberth, K. E., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. Fasullo, , and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., , and B. J. Soden, 2007: Global warming and the weakening of tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and K. M. Lau, 2006: Atmospheric hydrological cycle in the tropics in twentieth century coupled climate simulations. Int. J. Climatol., 26, 655678, doi:10.1002/joc.1279.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , L. Ricciardulli, , K. Hilburn, , and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , T. M. Smith, , and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normal during 1871–2000. J. Climate, 16, 16011612, doi:10.1175/1520-0442-16.10.1601.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Climate, 20, 203217, doi:10.1175/JCLI4001.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and T. Zhou, 2011: An assessment of monsoon precipitation changes during 1901–2001. Climate Dyn., 37, 279296, doi:10.1007/s00382-011-0993-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 10
PDF Downloads 10 10 2

Improved Historical Analysis of Oceanic Total Precipitable Water

View More View Less
  • 1 NOAA/NESDIS/STAR, and Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

The amount of water vapor in the atmosphere, total precipitable water (TPW), is an important part of the global water cycle, and a clearer understanding of ocean-area TPW is critical for understanding climate variations. This study uses satellite-period statistics and historical data to analyze monthly oceanic TPW beginning in the nineteenth century. Input data for analyzing the historical TPW includes outputs from an extended dynamic reanalysis and estimates of TPW based on historical sea surface temperature (SST). Methods are developed to optimally use the various inputs to produce an improved analysis. Cross-validation testing is used to guide analysis development. Some evaluation of the resulting analysis indicates several strong climate modes. A global mode indicates multidecadal increases in TPW since the nineteenth century, with strongest increases in the tropics and adjacent to land monsoon regions. Strongest multidecadal changes in the global mode are 1910–40 and since 1980. An ENSO mode for the extended period indicates a trend since the 1980s, opposite to the tendency in the global mode. There is no apparent multidecadal variation in the ENSO mode before 1980, suggesting that its multidecadal relationship with the global mode can change. Analysis of SST over the same period shows climate modes consistent with the TPW modes, and for the satellite period there are consistent variations in the satellite data, showing the strong link between SST and oceanic TPW.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00601.s1.

Corresponding author address: Thomas Smith, NOAA/NESDIS/STAR/SCSB and ESSIC/CICS, 5825 University Research Ct., Suite 4001, College Park, MD 20740. E-mail: tom.smith@noaa.gov

Abstract

The amount of water vapor in the atmosphere, total precipitable water (TPW), is an important part of the global water cycle, and a clearer understanding of ocean-area TPW is critical for understanding climate variations. This study uses satellite-period statistics and historical data to analyze monthly oceanic TPW beginning in the nineteenth century. Input data for analyzing the historical TPW includes outputs from an extended dynamic reanalysis and estimates of TPW based on historical sea surface temperature (SST). Methods are developed to optimally use the various inputs to produce an improved analysis. Cross-validation testing is used to guide analysis development. Some evaluation of the resulting analysis indicates several strong climate modes. A global mode indicates multidecadal increases in TPW since the nineteenth century, with strongest increases in the tropics and adjacent to land monsoon regions. Strongest multidecadal changes in the global mode are 1910–40 and since 1980. An ENSO mode for the extended period indicates a trend since the 1980s, opposite to the tendency in the global mode. There is no apparent multidecadal variation in the ENSO mode before 1980, suggesting that its multidecadal relationship with the global mode can change. Analysis of SST over the same period shows climate modes consistent with the TPW modes, and for the satellite period there are consistent variations in the satellite data, showing the strong link between SST and oceanic TPW.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00601.s1.

Corresponding author address: Thomas Smith, NOAA/NESDIS/STAR/SCSB and ESSIC/CICS, 5825 University Research Ct., Suite 4001, College Park, MD 20740. E-mail: tom.smith@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 85.82 KB)
Save