• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Australian Bureau of Meteorology and CSIRO, 2011a: Regional Overview. Vol. 1, Climate Change in the Pacific: Scientific Assessment and New Research, Australian Bureau of Meteorology, 257 pp. [Available online at www.pacificclimatechangescience.org/publications/reports/report-climate-change-in-the-pacific-scientific-assessment-and-new-research.]

  • Australian Bureau of Meteorology and CSIRO, 2011b: Country Reports. Vol. 2, Climate Change in the Pacific: Scientific Assessment and New Research, Australian Bureau of Meteorology, 273 pp. [Available online at www.pacificclimatechangescience.org/publications/reports/report-climate-change-in-the-pacific-scientific-assessment-and-new-research.]

  • Bi, D., and et al. , 2012: The ACCESS coupled model: Description, control climate and preliminary validation. Aust. Meteor. Ocean J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., , S. B. Power, , F. P. Delage, , R. A. Colman, , A. F. Moise, , and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582, doi:10.1175/2010JCLI3942.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2012: More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 488, 365369, doi:10.1038/nature11358.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and et al. , 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Chung, C., , S. B. Power, , J. Arblaster, , H. Rashid, , and G. Roff, 2013: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 1837–1856, doi:10.1007/s00382-013-1892-8.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Davies, T., , M. J. P. Cullen, , A. J. Malcolm, , M. H. Mawson, , A. Staniforth, , A. A. White, , and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett.,36, L17808, doi:10.1029/2009GL040000.

  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Kim, W., , and W. Cai, 2013: Second peak in the far eastern Pacific sea surface temperature anomaly following strong El Niño events. Geophys. Res. Lett., 40, 47514755, doi:10.1002/grl.50697.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., , and G. A. Vecchi, 2009: Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dyn., 35, 299–313, doi:10.1007/s00382-009-0562-3.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., , S. F. Milton, , C. A. Senior, , M. E. Brooks, , S. Ineson, , T. Reichler, , and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, doi:10.1175/2010JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and et al. , 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev. Discuss., 4, 765841, doi:10.5194/gmdd-4-765-2011.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • McPhaden, M., , S. Zebiak, , and M. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Murphy, B., , S. Power, , and S. McGree, 2014: The varied impacts of El Niño–Southern Oscillation on Pacific island climates. J. Climate, 27, 40154036, doi:10.1175/JCLI-D-13-00130.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Power, S., , M. Haylock, , R. Colman, , and X. Wang, 2006: The predictability of interdecadal changes in ENSO and ENSO teleconnections. J. Climate, 19, 47554771, doi:10.1175/JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., , F. Delage, , C. T. Y. Chung, , G. Kociuba, , and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541547, doi:10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Naik, , and G. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, doi:10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., , A. White, , and N. Wood, 2003: Analysis of semi-Lagrangian trajectory computations. Quart. J. Roy. Meteor. Soc., 129, 20652085, doi:10.1256/qj.02.115.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , T. Iguchi, , K. Misako, , A. Shibata, , and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402, 279282, doi:10.1038/46254.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and D. E. Harrison, 2006: The termination of the 1997–98 El Niño. Part I: Mechanisms of oceanic change. J. Climate, 19, 26332646, doi:10.1175/JCLI3776.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E., , M. Lengaigne, , C. Menkes, , N. Jourdain, , P. Marchesiello, , and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, doi:10.1007/s00382-009-0716-3.

    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., , A. Timmermann, , K. Stein, , S. McGregor, , N. Schneider, , M. H. England, , M. Lengaigne, , and W. Cai, 2013: Changes in South Pacific rainfall bands in a warming climate. Nat. Climate Change, 3, 417423, doi:10.1038/nclimate1726.

    • Search Google Scholar
    • Export Citation
  • Yeh, S., , J. Kug, , B. Dewitte, , M. Kwon, , B. Kirtman, , and F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 5
PDF Downloads 15 15 1

Modelled Rainfall Response to Strong El Niño Sea Surface Temperature Anomalies in the Tropical Pacific

View More View Less
  • 1 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

El Niño–Southern Oscillation strongly influences the interannual variability of rainfall over the Pacific, shifting the position and orientation of the South Pacific convergence zone (SPCZ) and intertropical convergence zone (ITCZ). In 1982/83 and 1997/98, very strong El Niño events occurred, during which time the SPCZ and ITCZ merged into a single zonal convergence zone (szCZ) extending across the Pacific at approximately 5°S. The sea surface temperature anomalies (SSTAs) reached very large values and peaked farther east compared to other El Niño events. Previous work shows that tropical Pacific precipitation responds nonlinearly to changing the amplitude of the El Niño SSTA even if the structure of the SSTA remains unchanged, but large canonical El Niño SSTAs cannot reproduce the szCZ precipitation pattern. This study conducts idealized, SST-forced experiments, starting with a large-amplitude canonical El Niño SSTA and gradually adding a residual pattern until the full (1982/83) and (1997/98) mean SST is reproduced. Differences between the canonical and strong El Niño SSTA patterns are crucial in generating an szCZ event. Three elements influence the precipitation pattern: (i) the local meridional SST maxima influences the ITCZ position and western Pacific precipitation, (ii) the total zonal SST maximum influences the SPCZ position, and (iii) the equatorial Pacific SST influences the total amount of precipitation. In these experiments, the meridional SST gradient increases as the SSTAs approach szCZ conditions. Additionally, the precipitation changes evident in szCZ years are primarily driven by changes in the atmospheric circulation, rather than thermodynamic changes. The addition of a global warming SST pattern increases the precipitation along the equator and shifts the ITCZ farther equatorward.

Corresponding author address: Christine Chung, Centre for Australian Weather and Climate Research, Bureau of Meteorology, GPO Box 1289, Melbourne, VIC 3001, Australia. E-mail: c.chung@bom.gov.au

Abstract

El Niño–Southern Oscillation strongly influences the interannual variability of rainfall over the Pacific, shifting the position and orientation of the South Pacific convergence zone (SPCZ) and intertropical convergence zone (ITCZ). In 1982/83 and 1997/98, very strong El Niño events occurred, during which time the SPCZ and ITCZ merged into a single zonal convergence zone (szCZ) extending across the Pacific at approximately 5°S. The sea surface temperature anomalies (SSTAs) reached very large values and peaked farther east compared to other El Niño events. Previous work shows that tropical Pacific precipitation responds nonlinearly to changing the amplitude of the El Niño SSTA even if the structure of the SSTA remains unchanged, but large canonical El Niño SSTAs cannot reproduce the szCZ precipitation pattern. This study conducts idealized, SST-forced experiments, starting with a large-amplitude canonical El Niño SSTA and gradually adding a residual pattern until the full (1982/83) and (1997/98) mean SST is reproduced. Differences between the canonical and strong El Niño SSTA patterns are crucial in generating an szCZ event. Three elements influence the precipitation pattern: (i) the local meridional SST maxima influences the ITCZ position and western Pacific precipitation, (ii) the total zonal SST maximum influences the SPCZ position, and (iii) the equatorial Pacific SST influences the total amount of precipitation. In these experiments, the meridional SST gradient increases as the SSTAs approach szCZ conditions. Additionally, the precipitation changes evident in szCZ years are primarily driven by changes in the atmospheric circulation, rather than thermodynamic changes. The addition of a global warming SST pattern increases the precipitation along the equator and shifts the ITCZ farther equatorward.

Corresponding author address: Christine Chung, Centre for Australian Weather and Climate Research, Bureau of Meteorology, GPO Box 1289, Melbourne, VIC 3001, Australia. E-mail: c.chung@bom.gov.au
Save