• Adler, R. F., and et al. , 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., , K. Hamilton, , and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 10711092, doi:10.1175/JCLI4035.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and J. V. Hurley, 2013: Thermodynamic bias in the multimodel mean boreal summer monsoon. J. Climate, 26, 22792287, doi:10.1175/JCLI-D-12-00493.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Cai, W., , A. Sullivan, , T. Cowan, , J. Ribbe, , and G. Shi, 2011: Simulation of the Indian Ocean Dipole: A relevant criterion for selecting models for climate projections. Geophys. Res. Lett., 38, L03704, doi:10.1029/2010GL046242.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , S.-P. Xie, , J.-Y. Lee, , Y. Kosaka, , and B. Wang, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res., 115, D22121, doi:10.1029/2010JD014595.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , S.-P. Xie, , G. Huang, , and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Search Google Scholar
    • Export Citation
  • Hashizume, M., , T. Terao, , and N. Minakawa, 2009: The Indian Ocean dipole and malaria risk in the highlands of western Kenya. Proc. Natl. Acad. Sci. USA, 106, 18571862, doi:10.1073/pnas.0806544106.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , S.-P. Xie, , N.-C. Lau, , and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, doi:10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , D. E. Waliser, , J.-L. F. Li, , F. W. Landerer, , and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, doi:10.1175/JCLI-D-12-00591.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi:10.1029/2012GL053777.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , S.-P. Xie, , and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, doi:10.1175/JCLI-D-14-00740.1, in press.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., , S.-P. Xie, , and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , J. S. Ronald, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Webster, P. J., , A. M. Moore, , J. P. Loschnigg, , and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, doi:10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., , Q. Liu, , S.-P. Xie, , Z. Liu, , and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 4
PDF Downloads 28 28 1

Climate Model Errors over the South Indian Ocean Thermocline Dome and Their Effect on the Basin Mode of Interannual Variability

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
  • | 3 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
© Get Permissions
Restricted access

Abstract

An open-ocean thermocline dome south of the equator is a striking feature of the Indian Ocean (IO) as a result of equatorial westerly winds. Over the thermocline dome, the El Niño–forced Rossby waves help sustain the IO basin (IOB) mode and offer climate predictability for the IO and surrounding countries. This study shows that a common equatorial easterly wind bias, by forcing a westward-propagating downwelling Rossby wave in the southern IO, induces too deep a thermocline dome over the southwestern IO (SWIO) in state-of-the-art climate models. Such a deep SWIO thermocline weakens the influence of subsurface variability on sea surface temperature (SST), reducing the IOB amplitude and possibly limiting the models’ skill of regional climate prediction. To the extent that the equatorial easterly wind bias originates from errors of the South Asian summer monsoon, improving the monsoon simulation can lead to substantial improvements in simulating and predicting interannual variability in the IO.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00810.1.s1.

Corresponding author address: Gen Li, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, CAS, 164 West Xingang Road, Guangzhou 510301, China. E-mail: ligen@scsio.ac.cn

Abstract

An open-ocean thermocline dome south of the equator is a striking feature of the Indian Ocean (IO) as a result of equatorial westerly winds. Over the thermocline dome, the El Niño–forced Rossby waves help sustain the IO basin (IOB) mode and offer climate predictability for the IO and surrounding countries. This study shows that a common equatorial easterly wind bias, by forcing a westward-propagating downwelling Rossby wave in the southern IO, induces too deep a thermocline dome over the southwestern IO (SWIO) in state-of-the-art climate models. Such a deep SWIO thermocline weakens the influence of subsurface variability on sea surface temperature (SST), reducing the IOB amplitude and possibly limiting the models’ skill of regional climate prediction. To the extent that the equatorial easterly wind bias originates from errors of the South Asian summer monsoon, improving the monsoon simulation can lead to substantial improvements in simulating and predicting interannual variability in the IO.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-14-00810.1.s1.

Corresponding author address: Gen Li, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, CAS, 164 West Xingang Road, Guangzhou 510301, China. E-mail: ligen@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 199.84 KB)
Save