Factors Controlling Cloud Albedo in Marine Subtropical Stratocumulus Regions in Climate Models and Satellite Observations

Frida A.-M. Bender Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Frida A.-M. Bender in
Current site
Google Scholar
PubMed
Close
,
Anders Engström Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Anders Engström in
Current site
Google Scholar
PubMed
Close
, and
Johannes Karlsson Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Johannes Karlsson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the radiative properties of five subtropical marine stratocumulus cloud regions, on monthly mean scale. Through examination of the relation between total albedo and cloud fraction, and its variability and relation to other parameters, some of the factors controlling the reflectivity, or albedo, of the clouds in these regions are investigated. It is found that the main part of the variability in albedo at a given cloud fraction can be related to temporal rather than spatial variability, indicating spatial homogeneity in cloud radiative properties in the studied regions. This is seen most clearly in satellite observations but also appears in an ensemble of climate models. Further comparison between satellite data and output from climate models shows that there is good agreement with respect to the role of liquid water path, the parameter that can be assumed to be the primary source of variability in cloud reflectivity for a given cloud fraction. On the other hand, the influence of aerosol loading on cloud albedo differs between models and observations. The cloud-albedo effect, or cloud brightening caused by aerosol through its coupling to cloud droplet number concentration and droplet size, is found not to dominate in the satellite observations on monthly mean scale, as it appears to do on this scale in the climate models. The disagreement between models and observations is particularly strong in regions with frequent occurrence of absorbing aerosols above clouds, where satellite data, in contrast to the climate models, indicate a scene darkening with increasing aerosol loading.

Corresponding author address: Frida Bender, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: frida@misu.su.se

Abstract

This study focuses on the radiative properties of five subtropical marine stratocumulus cloud regions, on monthly mean scale. Through examination of the relation between total albedo and cloud fraction, and its variability and relation to other parameters, some of the factors controlling the reflectivity, or albedo, of the clouds in these regions are investigated. It is found that the main part of the variability in albedo at a given cloud fraction can be related to temporal rather than spatial variability, indicating spatial homogeneity in cloud radiative properties in the studied regions. This is seen most clearly in satellite observations but also appears in an ensemble of climate models. Further comparison between satellite data and output from climate models shows that there is good agreement with respect to the role of liquid water path, the parameter that can be assumed to be the primary source of variability in cloud reflectivity for a given cloud fraction. On the other hand, the influence of aerosol loading on cloud albedo differs between models and observations. The cloud-albedo effect, or cloud brightening caused by aerosol through its coupling to cloud droplet number concentration and droplet size, is found not to dominate in the satellite observations on monthly mean scale, as it appears to do on this scale in the climate models. The disagreement between models and observations is particularly strong in regions with frequent occurrence of absorbing aerosols above clouds, where satellite data, in contrast to the climate models, indicate a scene darkening with increasing aerosol loading.

Corresponding author address: Frida Bender, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: frida@misu.su.se
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556, doi:10.5194/acp-9-543-2009.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., 2008: A note on the effect of GCM tuning on climate sensitivity. Environ. Res. Lett., 3, 014001, doi:10.1088/1748-9326/3/1/014001.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., H. Rodhe, R. J. Charlson, A. M.-L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, doi:10.1111/j.1600-0870.2006.00181.x.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., R. J. Charlson, A. M.-L. Ekman, and L. Leahy, 2011: Quantification of monthly mean regional-scale albedo of marine stratiform clouds in satellite observations and GCMs. J. Appl. Meteor. Climatol., 50, 21392148, doi:10.1175/JAMC-D-11-049.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Caldwell, P. M., Y. Zhang, and S. A. Klein, 2013: CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J. Climate, 26, 16071625, doi:10.1175/JCLI-D-12-00188.1.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 507, 6771, doi:10.1038/nature12674.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., A. S. Ackerman, F. A.-M. Bender, T. L. Anderson, and Z. Liu, 2007: On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus, 59B, 715727, doi:10.1111/j.1600-0889.2007.00297.x.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld, 2014: Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci., 7, 643646, doi:10.1038/ngeo2214.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship tracks on cloud reflectivity. Science, 237, 10201022, doi:10.1126/science.237.4818.1020.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23, 778785, doi:10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2.

  • Corti, T., and T. Peter, 2009: A simple model for cloud radiative forcing. Atmos. Chem. Phys., 9, 57515758, doi:10.5194/acp-9-5751-2009.

    • Search Google Scholar
    • Export Citation
  • Costantino, L., and F.-M. Bréon, 2010: Analysis of aerosol–cloud interaction from multi-sensor satellite observations. Geophys. Res. Lett., 37, L11801, doi:10.1029/2009GL041828.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., and M. A. Thomas, 2011: A global survey of aerosol–liquid water overlap based on four years of CALIPSO-CALIOP data. Atmos. Chem. Phys., 11, 11431154, doi:10.5194/acp-11-1143-2011.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., 2014: Do sophisticated parameterizations of aerosol–cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J. Geophys. Res. Atmos., 119, 817832, doi:10.1002/2013JD020511.

    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth Sci. Rev., 79, 73100, doi:10.1016/j.earscirev.2006.06.004.

    • Search Google Scholar
    • Export Citation
  • Engström, A., F. A.-M. Bender, and J. Karlsson, 2014: Improved representation of marine stratocumulus cloud shortwave radiative properties in the CMIP5 climate models. J. Climate, 27, 61756188, doi:10.1175/JCLI-D-13-00755.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Y., and V. Ramanathan, 2010: Investigation of aerosol–cloud interactions using a chemical transport model constrained by satellite observations. Tellus, 62B, 6986, doi:10.1111/j.1600-0889.2009.00444.x.

    • Search Google Scholar
    • Export Citation
  • George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud radiative properties over the southeast Pacific Ocean. Atmos. Chem. Phys., 10, 40474063, doi:10.5194/acp-10-4047-2010.

    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., P. Stier, and T. M. Wagner, 2013: Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data. Atmos. Chem. Phys., 13, 31773184, doi:10.5194/acp-13-3177-2013.

    • Search Google Scholar
    • Export Citation
  • Han, Q. Y., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, doi:10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 (D6), 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., V. Ramaswamy, and L. J. Donner, 1997: A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. Lett., 24, 143146, doi:10.1029/96GL03812.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. Noble, 2014: CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds. J. Atmos. Sci., 71, 312331, doi:10.1175/JAS-D-13-086.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 14071422, doi:10.1256/qj.03.61.

    • Search Google Scholar
    • Export Citation
  • Jones, A., D. L. Roberts, M. J. Woodage, and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20 29320 310, doi:10.1029/2000JD000089.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, and H. Rodhe, 2008: Cloud radiative forcing of subtropical low level clouds in global models. Climate Dyn., 30, 779788, doi:10.1007/s00382-007-0322-1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, and O. Bocuher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215223, doi:10.1038/nature01091.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, 2005: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11 20711 212, doi:10.1073/pnas.0505191102.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Kirkevåg, A., and Coauthors, 2013: Aerosol–climate interactions in the Norwegian Earth System Model—NorESM1-M. Geosci. Model Dev., 6, 207244, doi:10.5194/gmd-6-207-2013.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. G., and Coauthors, 2007: Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models. Proc. Natl. Acad. Sci. USA, 104, 12 25912 264, doi:10.1073/pnas.0608144104.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, doi:10.1029/2007GL029253.

    • Search Google Scholar
    • Export Citation
  • Krüger, O., and H. Graßl, 2002: The indirect aerosol effect over Europe. Geophys. Res. Lett., 29, 1925, doi:10.1029/2001GL014081.

  • Latham, J., and Coauthors, 2008: Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philos. Trans. Roy. Soc., 366A, 39693987, doi:10.1098/rsta.2008.0137.

    • Search Google Scholar
    • Export Citation
  • Liousse, C., and Coauthors, 2010: Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols. Atmos. Chem. Phys., 10, 96319646, doi:10.5194/acp-10-9631-2010.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and G. L. Schuster, 2008: An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res., 113, D14214, doi:10.1029/2007JD009763.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J. Kaufman, 2006: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.

    • Search Google Scholar
    • Export Citation
  • Menon, S., A. D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb, and D. Orlikowski, 2008: Analyzing signatures of aerosol–cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J. Geophys. Res., 113, D14S22, doi:10.1029/2007JD009442.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2007: Aerosol–cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys., 7, 30813101, doi:10.5194/acp-7-3081-2007.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174, doi:10.1029/2000GL012186.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., and M. Satoh, 2014: Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophys. Res. Lett., 41, 77547761, doi:10.1002/2014GL061812.

    • Search Google Scholar
    • Export Citation
  • Ockert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud type on Earth’s energy balance: Results for selected regions. J. Climate, 5, 11571171, doi:10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., L. Xu, and M. Wang, 2011: Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl. Acad. Sci. USA, 108, 13 40413 408, doi:10.1073/pnas.1018526108.

    • Search Google Scholar
    • Export Citation
  • Peters, K., J. Quaas, and H. Gral, 2011: A search for large-scale effects of ship emissions on clouds and radiation in satellite data. J. Geophys. Res., 116, D24205, doi:10.1029/2011JD016531.

    • Search Google Scholar
    • Export Citation
  • Peters, K., J. Quaas, P. Stier, and H. Graßl, 2014: Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol–climate models and satellite data. Tellus, 66B, 24054, doi:10.3402/tellusb.v66.24054.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 56, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products and validation. J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., M. V. Ramana, C. Corrigan, D. Kim, and V. Ramanathan, 2008: Simultaneous observations of aerosol–cloud–albedo interactions with three stacked unmanned aerial vehicles. Proc. Natl. Acad. Sci. USA, 105, 73707375, doi:10.1073/pnas.0710308105.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and G. Feingold, 2003: Explanation of discrepancies among satellite observations of the aerosol indirect effects. Geophys. Res. Lett., 30, 1776, doi:10.1029/2003GL017684.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol–cloud interactions. Science, 343, 379380, doi:10.1126/science.1247490.

    • Search Google Scholar
    • Export Citation
  • Schwartz, S. E., 1988: Are global cloud albedo and climate controlled by marine phytoplankton? Nature, 336, 441445, doi:10.1038/336441a0.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and Coauthors, 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and J.-L. Brenguier, 2009: Cloud-controlling factors: Low clouds. Clouds in the Perturbed Climate System, J. Heintzenberg and R. Charlson, Eds., MIT Press, 173–196.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, xxxx.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S. A., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Twomey, S. A., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., F. Peers, F. Ducos, P. Goloub, S. Platnick, J. Riedi, D. Tanré, and F. Thieuleux, 2013: Global analysis of aerosol properties above clouds. Geophys. Res. Lett., 40, 58095814, doi:10.1002/2013GL057482.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, 2007: 3-D aerosol–cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., 2010: Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol. Atmos. Chem. Phys., 10, 11 76911 777, doi:10.5194/acp-10-11769-2010.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., 2012: Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmos. Chem. Phys., 12, 139149, doi:10.5194/acp-12-139-2012.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers, 2013: The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys., 13, 33453361, doi:10.5194/acp-13-3345-2013.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Zeng, S., J. Riedi, C. R. Trepte, D. M. Winker, and Y.-X. Hu, 2014: Study of global cloud droplet number concentration with A-Train satellites. Atmos. Chem. Phys., 14, 71257134, doi:10.5194/acp-14-7125-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 167 13
PDF Downloads 356 125 11