Climatic Impacts of Parameterized Local and Remote Tidal Mixing

Angélique Melet Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Angélique Melet in
Current site
Google Scholar
PubMed
Close
,
Sonya Legg Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Sonya Legg in
Current site
Google Scholar
PubMed
Close
, and
Robert Hallberg NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Robert Hallberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent mixing driven by breaking internal tides plays a primary role in the meridional overturning and oceanic heat budget. Most current climate models explicitly parameterize only the local dissipation of internal tides at the generation sites, representing the remote dissipation of low-mode internal tides that propagate away through a uniform background diffusivity. In this study, a simple energetically consistent parameterization of the low-mode internal-tide dissipation is derived and implemented in the Geophysical Fluid Dynamics Laboratory Earth System Model with GOLD component (GFDL-ESM2G). The impact of remote and local internal-tide dissipation on the ocean state is examined using a series of simulations with the same total amount of energy input for mixing, but with different scalings of the vertical profile of dissipation with the stratification and with different idealized scenarios for the distribution of the low-mode internal-tide energy dissipation: uniformly over ocean basins, continental slopes, or continental shelves. In these idealized scenarios, the ocean state, including the meridional overturning circulation, ocean ventilation, main thermocline thickness, and ocean heat uptake, is particularly sensitive to the vertical distribution of mixing by breaking low-mode internal tides. Less sensitivity is found to the horizontal distribution of mixing, provided that distribution is in the open ocean. Mixing on coastal shelves only impacts the large-scale circulation and water mass properties where it modifies water masses originating on shelves. More complete descriptions of the distribution of the remote part of internal-tide-driven mixing, particularly in the vertical and relative to water mass formation regions, are therefore required to fully parameterize ocean turbulent mixing.

Corresponding author address: Angélique Melet, Princeton University, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: angelique.melet@noaa.gov

Abstract

Turbulent mixing driven by breaking internal tides plays a primary role in the meridional overturning and oceanic heat budget. Most current climate models explicitly parameterize only the local dissipation of internal tides at the generation sites, representing the remote dissipation of low-mode internal tides that propagate away through a uniform background diffusivity. In this study, a simple energetically consistent parameterization of the low-mode internal-tide dissipation is derived and implemented in the Geophysical Fluid Dynamics Laboratory Earth System Model with GOLD component (GFDL-ESM2G). The impact of remote and local internal-tide dissipation on the ocean state is examined using a series of simulations with the same total amount of energy input for mixing, but with different scalings of the vertical profile of dissipation with the stratification and with different idealized scenarios for the distribution of the low-mode internal-tide energy dissipation: uniformly over ocean basins, continental slopes, or continental shelves. In these idealized scenarios, the ocean state, including the meridional overturning circulation, ocean ventilation, main thermocline thickness, and ocean heat uptake, is particularly sensitive to the vertical distribution of mixing by breaking low-mode internal tides. Less sensitivity is found to the horizontal distribution of mixing, provided that distribution is in the open ocean. Mixing on coastal shelves only impacts the large-scale circulation and water mass properties where it modifies water masses originating on shelves. More complete descriptions of the distribution of the remote part of internal-tide-driven mixing, particularly in the vertical and relative to water mass formation regions, are therefore required to fully parameterize ocean turbulent mixing.

Corresponding author address: Angélique Melet, Princeton University, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: angelique.melet@noaa.gov
Save
  • Adcroft, A., J. R. Scott, and J. Marotzke, 2001: Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett., 28, 17351738, doi:10.1029/2000GL012182.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature, 423, 159163, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, doi:10.1175/JPO3085.1.

    • Search Google Scholar
    • Export Citation
  • Althaus, A., E. Kunze, and T. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, doi:10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, doi:10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, S. D. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219, doi:10.1175/JPO2888.1.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bessières, L., G. Madec, and F. Lyard, 2008: Global tidal residual mean circulation: Does it affect a climate OGCM? Geophys. Res. Lett., 35, L03609, doi:10.1029/2007GL032644.

    • Search Google Scholar
    • Export Citation
  • Bouffard, D., and L. Boegman, 2013: A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans, 61–62, 1434, doi:10.1016/j.dynatmoce.2013.02.002.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, doi:10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. Holmes-Cerfon, 2011: Decay of an internal tide due to random topography in the ocean. J. Fluid Mech., 678, 271293, doi:10.1017/jfm.2011.115.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., M. C. Gregg, and M. A. Merrifield, 2006: Flow and mixing around a small seamount on Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 10361052, doi:10.1175/JPO2924.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., J. Y. Cherniawsky, and M. G. G. Foreman, 2001: North Pacific internal tides from the Aleutian Ridge: Altimeter observations and modeling. J. Mar. Res., 59, 167191, doi:10.1357/002224001762882628.

    • Search Google Scholar
    • Export Citation
  • Dalan, F., P. H. Stone, and A. P. Sokolov, 2005: Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part II: Global warming scenario. J. Climate, 18, 24822496, doi:10.1175/JCLI3412.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 943959, doi:10.1175/1520-0485(1985)015<0943:UOTSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508, doi:10.1175/2009JPO4275.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Sommer, A. J. Nurser, and A. C. Naveira Garabato, 2015a: On the consumption of Antarctic bottom water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, doi:10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Sommer, A. J. Nurser, and A. C. Naveira Garabato, 2015b: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, doi:10.1175/JPO-D-14-0259.1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Dushaw, B., 2002: Mapping low-mode internal tides near Hawaii using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 29, 1250, doi:10.1029/2001GL013944.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, doi:10.1175/JPO-D-13-0224.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. J. Phys. Oceanogr., 25, 27562777, doi:10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, A. Thurnherr, and T. Hibiya, 2014: Comparison of calculated energy flux of internal tides with microstructure measurements. Tellus, 66A, 23240, doi:10.3402/tellusa.v66.23240.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393, doi:10.1357/002224084788502756.

  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 1527, doi:10.1357/002224084788506158.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Gnanadesikan, A., B. L. Samuels, and R. D. Slater, 2003: Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett., 30, 1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi, 2004: Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochem. Cycles, 18, GB4010, doi:10.1029/2003GB002097.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., R. A. Hall, G. Carter, M. H. Alford, R.-C. Lien, D. P. Winkel, and D. J. Wain, 2011: Flow and mixing in Ascension, a steep narrow canyon. J. Geophys. Res., 116, C07016, doi:10.1029/2010JC006610.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2003: The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model. Internal Gravity Waves and Small-Scale Turbulence: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 187–203. [Available online at http://www.soest.hawaii.edu/PubServices/2003pdfs/Hallberg.pdf.]

  • Hallberg, R., and A. Adcroft, 2009: Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modell., 29, 1526, doi:10.1016/j.ocemod.2009.02.008.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., A. Adcroft, J. P. Dunne, J. P. Krasting, and R. J. Stouffer, 2013: Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation. J. Climate, 26, 29472956, doi:10.1175/JCLI-D-12-00506.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., and R. W. Hallberg, 2008: Pacific subtropical cell response to reduced equatorial dissipation. J. Phys. Oceanogr., 38, 18941912, doi:10.1175/2008JPO3708.1.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878496, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746, doi:10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ilicak, M., A. Adcroft, S. M. Griffies, and R. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modell., 45–46, 3758, doi:10.1016/j.ocemod.2011.10.003.

    • Search Google Scholar
    • Export Citation
  • Ivey, G., and R. Nokes, 1989: Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mech., 204, 479500, doi:10.1017/S0022112089001849.

    • Search Google Scholar
    • Export Citation
  • Jachec, S. M., O. B. Fringer, M. G. Gerritsen, and R. L. Street, 2006: Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area. Geophys. Res. Lett., 33, L12605, doi:10.1029/2006GL026314.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38, 10331053, doi:10.1175/2007JPO3779.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. Rudnick, and S. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, doi:10.1175/JPO-D-15-0038.1.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., and C. Tierney, 1997: Global baroclinic tides. Prog. Oceanogr., 40, 163178, doi:10.1016/S0079-6611(97)00028-1.

  • Kelly, S., N. Jones, J. Nash, and A. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, doi:10.1002/grl.50872.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. N. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. A. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, doi:10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y.-J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, doi:10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Buijsman, S. Legg, and R. Pinkel, 2013: Parameterizing surface and internal tide scattering and breaking on supercritical topography: The one- and two-ridge cases. J. Phys. Oceanogr., 43, 13801397, doi:10.1175/JPO-D-12-061.1.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, doi:10.1175/JPO-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183, doi:10.1175/JPO2886.1.

    • Search Google Scholar
    • Export Citation
  • Lee, I.-H., R.-C. Lien, J. T. Liu, and W.-S. Chuang, 2009: Turbulence mixing and internal tides in Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst., 76, 383396, doi:10.1016/j.jmarsys.2007.08.005.

    • Search Google Scholar
    • Export Citation
  • Lefauve, A., C. Muller, and A. Melet, 2015: A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. Oceans, 120, 47604777, doi:10.1002/2014JC010598.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2014: Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr., 44, 359383, doi:10.1175/JPO-D-12-0241.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., R. Hallberg, and J. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and nonhydrostatic models. Ocean Modell., 11, 6997, doi:10.1016/j.ocemod.2004.11.006.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276, 18311833, doi:10.1126/science.276.5320.1831.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., T. M. S. Johnston, and R. Pinkel, 2008: Strong transport and mixing of deep water through the Southwest Indian Ridge. Nat. Geosci., 1, 755758, doi:10.1038/ngeo340.

    • Search Google Scholar
    • Export Citation
  • Martini, K., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, doi:10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • Martini, K., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2013: Internal bores and breaking internal tides on the Oregon continental slope. J. Phys. Oceanogr., 43, 120139, doi:10.1175/JPO-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, doi:10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. L. Polzin, 2013a: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., M. Nikurashin, C. J. Muller, S. Falahat, J. Nycander, P. G. Timko, B. K. Arbic, and J. A. Goff, 2013b: Internal tide generation by abyssal hills using analytical theory. J. Geophys. Res. Oceans, 118, 63036318, doi:10.1002/2013JC009212.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave–driven mixing. J. Phys. Oceanogr., 44, 900921, doi:10.1175/JPO-D-13-072.1.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42, 135148, doi:10.1016/0967-0637(95)92886-C.

  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, doi:10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., J. M. Kunze, E. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, 2012: The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr., 42, 19812000, doi:10.1175/JPO-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, doi:10.1175/2010JPO4522.1.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nat. Commun., 4, 2419, doi:10.1038/ncomms3419.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., and K. Bryan, 2000: Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30, 590605, doi:10.1175/1520-0485(2000)030<0590:COTDCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, doi:10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2008: Mesoscale eddy–internal wave coupling. Part I: Symmetry, wave capture, and results from the Mid-Ocean Dynamics Experiment. J. Phys. Oceanogr., 38, 25562574, doi:10.1175/2008JPO3666.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rainville, L. N., and R. Pinkel, 2006: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, doi:10.1175/JPO2882.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R., and G. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., X. Zhai, W. J. Merryfield, and W. G. Lee, 2012: The combined effect of tidally and eddy driven diapycnal mixing on the large-scale ocean circulation. J. Phys. Oceanogr., 42, 526538, doi:10.1175/JPO-D-11-0122.1.

    • Search Google Scholar
    • Export Citation
  • Schiermeier, Q., 2007: Churn, churn, churn. Nature, 447, 522524, doi:10.1038/447522a.

  • Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32, 35783595, doi:10.1175/1520-0485(2002)032<3578:TLODMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Sokolov, A. P., C. E. Forest, and P. H. Stone, 2003: Comparing oceanic heat uptake in AOGCM transient climate change experiments. J. Climate, 16, 15731582, doi:10.1175/1520-0442-16.10.1573.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, doi:10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Thiele, G., and