Intensification of the Western North Pacific Anticyclone Response to the Short Decaying El Niño Event due to Greenhouse Warming

Wei Chen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wei Chen in
Current site
Google Scholar
PubMed
Close
,
June-Yi Lee Research Center for Climate Sciences, Pusan National University, Busan, South Korea

Search for other papers by June-Yi Lee in
Current site
Google Scholar
PubMed
Close
,
Kyung-Ja Ha Research Center for Climate Sciences, and Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Kyung-Ja Ha in
Current site
Google Scholar
PubMed
Close
,
Kyung-Sook Yun Research Center for Climate Sciences, and Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Kyung-Sook Yun in
Current site
Google Scholar
PubMed
Close
, and
Riyu Lu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.

Corresponding author address: Dr. June-Yi Lee, Research Center for Climate Sciences, Pusan National University, Busan 46241, South Korea. E-mail: juneyi@pusan.ac.kr

Abstract

Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.

Corresponding author address: Dr. June-Yi Lee, Research Center for Climate Sciences, Pusan National University, Busan 46241, South Korea. E-mail: juneyi@pusan.ac.kr
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4, 269285, doi:10.1175/1520-0442(1991)004<0269:TIOMTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bejarano, L., and F.-F. Jin, 2008: Coexistence of equatorial coupled modes of ENSO. J. Climate, 21, 30513067, doi:10.1175/2007JCLI1679.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103923, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-K. Park, B. Dong, R. Lu, and W.-S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, doi:10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chen, W., R. Lu, and B. Dong, 2014: Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation. J. Geophys. Res. Atmos., 119, 13 63713 650, doi:10.1002/2014JD022199.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J.-Y. Tu, and J.-Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, doi:10.1175/2761.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-Y. Lee, Y. Kosaka, and B. Wang, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res., 115, D22121, doi:10.1029/2010JD014595.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, doi:10.1007/s00382-009-0686-5.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., and Coauthors, 2014: Seasonal prediction of distinct climate anomalies in the summer 2010 over the tropical Indian Ocean and South Asia. J. Meteor. Soc. Japan, 92, 116, doi:10.2151/jmsj.2014-101.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chul, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Climate Dyn., 43 (1-2), 535551, doi:10.1007/s00382-013-2002-7.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24, 89104, doi:10.1007/s00382-004-0478-x.

  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Ding, R., K.-J. Ha, and J. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 10591071, doi:10.1007/s00382-009-0555-2.

    • Search Google Scholar
    • Export Citation
  • Fan, L., S.-I. Shin, Q. Liu, and Z. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 24712477, doi:10.1002/grl.50494.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, doi:10.1007/s00382-005-0084-6.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. Cai, and A. Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 29–32.

  • Ha, K.-J., J.-E. Chu, J.-Y. Lee, and K.-S. Yun, 2016: Interbasin coupling between the tropical Indian and Pacific Ocean on interannual timescale: Observation and CMIP5 reproduction. Climate Dyn., doi:10.1007/s00382-016-3087-6, in press.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K.-M. Hu, G. Huang, and R.-H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., and Y.-Y. Kim, 2002: Mechanism of Kelvin and Rossby waves during ENSO events. Meteor. Atmos. Phys., 81, 169189, doi:10.1007/s00703-002-0547-9.

    • Search Google Scholar
    • Export Citation
  • Kim, S.-T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, doi:10.1088/1748-9326/7/3/034002.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, doi:10.1073/pnas.0710860105.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101119, doi:10.1007/s00382-012-1564-0.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical–extratropical teleconnection. J. Climate, 28, 86348647, doi:10.1175/JCLI-D-15-0154.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 11891203, doi:10.1007/s00382-010-0909-9.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., S. S. Lee, B. Wang, K.-J. Ha, and J.-G. Jhun, 2013: Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dyn., 41, 578587, doi:10.1007/s00382-012-1588-5.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, K.-H. Seo, J.-S. Kug, Y.-S. Choi, Y. Kosaka, and K.-J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27, 36433664, doi:10.1175/JCLI-D-13-00261.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., P. N. Vinayachandran, K.-J. Ha, and J.-G. Jhun, 2010: Shift of peak in summer monsoon rainfall over Korea and its association with El Niño–Southern Oscillation. J. Geophys. Res., 115, D02111, doi:10.1029/2009JD011717.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 11731188, doi:10.1007/s00382-010-0832-0.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., Y.-W. Seo, K.-J. Ha, and J.-G. Jhun, 2013: Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pac. J. Atmos. Sci., 49, 171182, doi:10.1007/s13143-013-0018-x.

    • Search Google Scholar
    • Export Citation
  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, doi:10.1175/2008JCLI2433.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., R. Lu, and B. Dong, 2007: The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J. Climate, 20, 51645177, doi:10.1175/JCLI4289.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter10.pdf.]

  • Nigam, S., and H.-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6, 657676, doi:10.1175/1520-0442(1993)006<0657:SOOAAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, doi:10.1029/2012GL052759.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser, and G. Meehl, 2012: Will there be a significant change to El Niño in the twenty-first century? J. Climate, 25, 21292145, doi:10.1175/JCLI-D-11-00252.1.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Nino/Southern Oscillation. Nat. Geosci., 6, 540544, doi:10.1038/ngeo1826.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, B., R. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variability. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Yang, T. Zhou, and B. Wang, 2008: Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J. Climate, 21, 17711789, doi:10.1175/2007JCLI1981.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, doi:10.1073/pnas.1214626110.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J.-Y. Lee, and B. Xiang, 2015: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 6174, doi:10.1007/s00382-014-2218-1.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2013: El Niño teleconnections in CMIP5 models. Climate Dyn., 41, 21652177, doi:10.1007/s00382-012-1537-3.

  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, doi:10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2007GL030526.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., K.-J. Ha, S.-W. Yeh, B. Wang, and B. Xiang, 2015: Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Climate Dyn., 44, 19791992, doi:10.1007/s00382-014-2193-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 543 220 4
PDF Downloads 311 85 4