Extreme Convection and Tropical Climate Variability: Scaling of Cold Brightness Temperatures to Sea Surface Temperature

Sun Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Sun Wong in
Current site
Google Scholar
PubMed
Close
and
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in tropical convective events provide a test bed for understanding changes of extreme convection in a warming climate. Because convective cloud top in deep convection is associated with cold brightness temperatures (BTs) in infrared window channels, variability in global convective events can be studied by spaceborne measurements of BTs. The sensitivity of BTs, directly measured by an Atmospheric Infrared Sounder (AIRS) window channel, to natural changes (the seasonal cycle and El Niño–Southern Oscillation) in tropical sea surface temperature (SST) is examined. It is found that tropical average BTs (over the ocean) at the low percentiles of their probability distributions scale with tropical average SSTs (higher SST leading to colder BTs), with the lower percentiles being significantly more sensitive to changes in SST. The sensitivity is reduced for high percentiles of BT and is insignificant for the median BT, and has similar magnitudes for the two natural changes used in the study. The regions where the lower-percentile BTs are most sensitive to SST are near the edges of the convection active areas (intertropical convergence zone and South Pacific convergence zone), including areas with active tropical cyclone activity. Since cold BTs of lower percentiles represent stronger convective events, this study provides, for the first time, global observational evidence of higher sensitivity of changes in stronger convective activity to a changing SST. This result has important potential implications in answering the key climate question of how severe tropical convection will change in a warming world.

Corresponding author address: Sun Wong, Jet Propulsion Laboratory, California Institute of Technology, Section 3243, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov

Abstract

Changes in tropical convective events provide a test bed for understanding changes of extreme convection in a warming climate. Because convective cloud top in deep convection is associated with cold brightness temperatures (BTs) in infrared window channels, variability in global convective events can be studied by spaceborne measurements of BTs. The sensitivity of BTs, directly measured by an Atmospheric Infrared Sounder (AIRS) window channel, to natural changes (the seasonal cycle and El Niño–Southern Oscillation) in tropical sea surface temperature (SST) is examined. It is found that tropical average BTs (over the ocean) at the low percentiles of their probability distributions scale with tropical average SSTs (higher SST leading to colder BTs), with the lower percentiles being significantly more sensitive to changes in SST. The sensitivity is reduced for high percentiles of BT and is insignificant for the median BT, and has similar magnitudes for the two natural changes used in the study. The regions where the lower-percentile BTs are most sensitive to SST are near the edges of the convection active areas (intertropical convergence zone and South Pacific convergence zone), including areas with active tropical cyclone activity. Since cold BTs of lower percentiles represent stronger convective events, this study provides, for the first time, global observational evidence of higher sensitivity of changes in stronger convective activity to a changing SST. This result has important potential implications in answering the key climate question of how severe tropical convection will change in a warming world.

Corresponding author address: Sun Wong, Jet Propulsion Laboratory, California Institute of Technology, Section 3243, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: sun.wong@jpl.nasa.gov
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and A. Ruzmaikin, 2013: Frequency of deep convective clouds in the tropical zone from ten years of AIRS data. Atmos. Chem. Phys., 13, 10 79510 806, doi:10.5194/acp-13-10795-2013.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., S. Broberg, D. Elliott, S. Gaiser, and D. Gregorich, 2006: Three years of Atmospheric Infrared Sounder radiometric calibration validation using sea surface temperatures. J. Geophys. Res., 111, D16S90, doi:10.1029/2005JD006822.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., A. Ruzmaikin, and J. Teixeira, 2008: Frequency of severe storms and global warming. Geophys. Res. Lett., 35, L19805, doi:10.1029/2008GL034562.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: The Atmospheric Infrared Sounder (AIRS): Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, doi:10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 15231527, doi:10.1126/science.1192546.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., P. Yang, and Z. Zhang, 2008: Water-vapor climate feedback inferred from climate fluctuations, 2003–2008. Geophys. Res. Lett., 35, L20704, doi:10.1029/2008GL035333.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, doi:10.1038/326483a0.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. D., and M. Collins, 2004: Quantifying the water vapour feedback associated with post-Pinatubo global cooling. Climate Dyn., 23, 207214, doi:10.1007/s00382-004-0431-z.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Iorio, J. P., P. B. Duffy, B. Govindasamy, S. L. Thompson, M. Khairoutdinov, and D. Randall, 2004: Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Climate Dyn., 23, 243258, doi:10.1007/s00382-004-0440-y.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, doi:10.1038/ngeo202.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. V. Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846, doi:10.1175/2007JCLI1946.1.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.

    • Search Google Scholar
    • Export Citation
  • Mann, M., and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Newman, M. E. J., 2005: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys., 46, 323351, doi:10.1080/00107510500052444.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Tayler, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1997: Variations in the tropical greenhouse effect during El Niño. J. Climate, 10, 10501055, doi:10.1175/1520-0442(1997)010<1050:VITTGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Strow, L. L., S. E. Hannon, S. De-Souza Machado, H. E. Motteler, and D.-C. Tobin, 2006: Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. J. Geophys. Res., 111, D09S06, doi:10.1029/2005JD006146.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portman, 2006: How often does it rain? J. Climate, 19, 916934, doi:10.1175/JCLI3672.1.

  • Sun, Y., S. Solomon, A. Dai, and R. W. Portman, 2007: How often will it rain? J. Climate, 20, 48014818, doi:10.1175/JCLI4263.1.

  • Sura, P., 2013: Stochastic models of climate extremes: Theory and observations. Extremes in a Changing Climate: Detection, Analysis and Uncertainty, A. AghaKouchak et al., Eds., Water Science and Technology Library, Vol. 65, Springer, 181–222, doi:10.1007/978-94-007-4479-0_7.

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wong, S., and A. E. Dessler, 2005: Suppression of deep convection over the tropical North Atlantic by Saharan air layer. Geophys. Res. Lett., 32, L09808, doi:10.1029/2004GL022295.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 66 1
PDF Downloads 94 36 0