Seasonal–Interannual Variation and Prediction of Wet and Dry Season Rainfall over the Maritime Continent: Roles of ENSO and Monsoon Circulation

Tuantuan Zhang Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China

Search for other papers by Tuantuan Zhang in
Current site
Google Scholar
PubMed
Close
,
Song Yang Department of Atmospheric Sciences, and Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, Guangdong, China

Search for other papers by Song Yang in
Current site
Google Scholar
PubMed
Close
,
Xingwen Jiang Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China

Search for other papers by Xingwen Jiang in
Current site
Google Scholar
PubMed
Close
, and
Ping Zhao State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ping Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors analyze the seasonal–interannual variations of rainfall over the Maritime Continent (MC) and their relationships with El Niño–Southern Oscillation (ENSO) and large-scale monsoon circulation. They also investigate the predictability of MC rainfall using the hindcast of the U.S. National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2).

The seasonal evolution of MC rainfall is characterized by a wet season from December to March and a dry season from July to October. The increased (decreased) rainfall in the wet season is related to the peak-decaying phase of La Niña (El Niño), whereas the increased (decreased) rainfall in the dry season is related to the developing phase of La Niña (El Niño), with an apparent spatial incoherency of the SST–rainfall relationship in the wet season. For extremely wet cases of the wet season, local warm SST also contributes to the above-normal rainfall over the MC except for the western area of the MC due to the effect of the strong East Asian winter monsoon.

The CFSv2 shows high skill in predicting the main features of MC rainfall variations and their relationships with ENSO and anomalies of the large-scale monsoon circulation, especially for strong ENSO years. It predicts the rainfall and its related circulation patterns skillfully in advance by several months, especially for the dry season. The relatively lower skill of predicting MC rainfall for the wet season is partly due to the low prediction skill of rainfall over Sumatra, Malay, and Borneo (SMB), as well as the unrealistically predicted relationship between SMB rainfall and ENSO.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Department of Atmospheric Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China. E-mail: yangsong3@mail.sysu.edu.cn

Abstract

The authors analyze the seasonal–interannual variations of rainfall over the Maritime Continent (MC) and their relationships with El Niño–Southern Oscillation (ENSO) and large-scale monsoon circulation. They also investigate the predictability of MC rainfall using the hindcast of the U.S. National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2).

The seasonal evolution of MC rainfall is characterized by a wet season from December to March and a dry season from July to October. The increased (decreased) rainfall in the wet season is related to the peak-decaying phase of La Niña (El Niño), whereas the increased (decreased) rainfall in the dry season is related to the developing phase of La Niña (El Niño), with an apparent spatial incoherency of the SST–rainfall relationship in the wet season. For extremely wet cases of the wet season, local warm SST also contributes to the above-normal rainfall over the MC except for the western area of the MC due to the effect of the strong East Asian winter monsoon.

The CFSv2 shows high skill in predicting the main features of MC rainfall variations and their relationships with ENSO and anomalies of the large-scale monsoon circulation, especially for strong ENSO years. It predicts the rainfall and its related circulation patterns skillfully in advance by several months, especially for the dry season. The relatively lower skill of predicting MC rainfall for the wet season is partly due to the low prediction skill of rainfall over Sumatra, Malay, and Borneo (SMB), as well as the unrealistically predicted relationship between SMB rainfall and ENSO.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Department of Atmospheric Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China. E-mail: yangsong3@mail.sysu.edu.cn
Save
  • Achuthavarier, D., and V. Krishnamurtky, 2010: Relation between intraseasonal and interannual variability of the South Asian monsoon in the National Centers for Environmental Predictions forecast systems. J. Geophys. Res., 115, D08104, doi:10.1029/2009JD012865.

    • Search Google Scholar
    • Export Citation
  • Aldrian, E., and D. Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 14351452, doi:10.1002/joc.950.

    • Search Google Scholar
    • Export Citation
  • Arakawa, O., and A. Kitoh, 2005: Rainfall diurnal variation over the Indonesian Maritime Continent simulated by 20 km mesh GCM. SOLA, 1, 109112, doi:10.2151/sola.2005-029.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and K.-M. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946, doi:10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, doi:10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., P. A. Harr, and H.-J. Chen, 2005a: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, doi:10.1175/MWR-2868.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, J. McBride, and C. Liu, 2005b: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Search Google Scholar
    • Export Citation
  • Dayem, K. E., D. C. Noone, and P. Molnar, 2007: Tropical western Pacific warm pool and maritime continent rainfall rates and their contrasting relationships with the Walker circulation. J. Geophys. Res., 112, D06101, doi:10.1029/2006JD007870.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., and V. Krishnamurthy, 2010: Spatial structure, forecast errors, and predictability of the South Asian monsoon in CFS monthly retrospective forecasts. J. Climate, 23, 47504769, doi:10.1175/2010JCLI2356.1.

    • Search Google Scholar
    • Export Citation
  • Gao, H., S. Yang, A. Kumar, Z.-Z. Hu, B. Huang, Y. Li, and B. Jha, 2011: Variations of the East Asian mei-yu and simulation and prediction by the NCEP Climate Forecast System. J. Climate, 24, 94108, doi:10.1175/2010JCLI3540.1.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., Z.-Z. Hu, B. Jha, S. Yang, J. Zhu, and B. Shen, 2014: Variability and predictability in northeast China climate during 1948–2012. Climate Dyn., 43, 787804, doi:10.1007/s00382-013-1944-0.

    • Search Google Scholar
    • Export Citation
  • Hamada, J.-I., M. D. Yamanaka, J. Matsumoto, S. Fukao, P. A. Winarso, and T. Sribimawati, 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80, 285310, doi:10.2151/jmsj.80.285.

    • Search Google Scholar
    • Export Citation
  • Hara, M., T. Yoshikane, H. G. Takahashi, F. Kimura, A. Noda, and T. Tokioka, 2009: Assessment of the diurnal cycle of rainfall over the Maritime Continent simulated by a 20 km mesh GCM using TRMM PR data. J. Meteor. Soc. Japan, 87A, 413424, doi:10.2151/jmsj.87A.413.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 38823887, doi:10.1175/1520-0442(2001)014<3882:SCAPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, doi:10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, W. Wang, J. Zhu, and C. Wen, 2013: Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Climate Dyn., 40, 27452759, doi:10.1007/s00382-012-1431-z.

    • Search Google Scholar
    • Export Citation
  • Jia, X., and H. Lin, 2013: The possible reasons for the misrepresented long-term climate trends in the seasonal forecasts of HFP2. Mon. Wea. Rev., 141, 31543169, doi:10.1175/MWR-D-12-00302.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X., H. Lin, J.-Y. Lee, and B. Wang, 2012: Season-dependent forecast skill of the leading forced atmospheric circulation pattern over the North Pacific and North American region. J. Climate, 25, 72487265, doi:10.1175/JCLI-D-11-00522.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X., J.-Y. Lee, H. Lin, A. Alessandri, and K.-J. Ha, 2014a: Interdecadal change in the Northern Hemisphere seasonal climate prediction skill: Part I. The leading forced mode of atmospheric circulation. Climate Dyn., 43, 15951609, doi:10.1007/s00382-013-1988-1.

    • Search Google Scholar
    • Export Citation
  • Jia, X., J.-Y. Lee, H. Lin, H. Hendon, and K.-J. Ha, 2014b: Interdecadal change in the Northern Hemisphere seasonal climate prediction skill: Part II. Predictability and prediction skill. Climate Dyn., 43, 16111630, doi:10.1007/s00382-014-2084-x.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, J. Li, Y. Li, H. Hu, and Y. Lian, 2013a: Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Climate Dyn., 41, 21992212, doi:10.1007/s00382-013-1934-2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, X. Liu, Z.-Y. Zuo, and B. Jha, 2013b: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP Climate Forecast System version 2. J. Climate, 26, 37083727, doi:10.1175/JCLI-D-12-00437.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Yang, Y. Li, A. Kumar, W. Wang, and Z. Gao, 2013c: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, doi:10.1002/jgrd.50193.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Li, S. Yang, J. Shu, and G. He, 2015: Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau. Climate Dyn., 45, 30913102, doi:10.1007/s00382-015-2526-0.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012a: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012b: Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 29752991, doi:10.1007/s00382-012-1470-5.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., R. Shirooka, J.-I. Hamada, and F. Syamsudin, 2011: Interannual rainfall variability over the eastern Maritime Continent. J. Meteor. Soc. Japan, 89A, 111122, doi:10.2151/jmsj.2011-A07.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1983: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: Lagged correlations. J. Atmos. Sci., 40, 27512767, doi:10.1175/1520-0469(1983)040<2751:STCVAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and C.-P. Chang, 1987: Planetary scale aspects of winter monsoon and teleconnections. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 161–202.

  • Lau, K.-M., C.-P. Chang, and P. H. Chan, 1983: Short-term planetary-scale interactions over the tropics and midlatitudes. Part II: Winter-MONEX period. Mon. Wea. Rev., 111, 13721388, doi:10.1175/1520-0493(1983)111<1372:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 42554262, doi:10.1175/2010JCLI3375.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 44744497, doi:10.1175/JCLI3526.1.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1992: The seasonal changes in Asian and Australian monsoon regions. J. Meteor. Soc. Japan, 70, 257273.

  • Matsumoto, J., and T. Murakami, 2002: Seasonal migration of monsoons between the Northern and Southern Hemisphere as revealed from equatorially symmetric and asymmetric OLR data. J. Meteor. Soc. Japan, 80, 419437, doi:10.2151/jmsj.80.419.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004, doi:10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., M. R. Haylock, and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 29052914, doi:10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 2750, doi:10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2011: Convective systems developed along the coastline of Sumatera Island, Indonesia, observed with an X-band Doppler radar during the HARIMAU2006 campaign. J. Meteor. Soc. Japan, 89A, 6181, doi:10.2151/jmsj.2011-A04.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2008: Why rainfall is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, doi:10.1175/2007JAS2422.1.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, doi:10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sankar-Rao, M., K.-M. Lau, and S. Yang, 1996: On the relationship between Eurasian snow cover and the Asian summer monsoon. Int. J. Climatol., 16, 605616, doi:10.1002/(SICI)1097-0088(199606)16:6<605::AID-JOC41>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus merger in the Maritime Continent region. Meteor. Atmos. Phys., 51, 7399, doi:10.1007/BF01080881.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL022734.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., M. Wen, and W. Higgins, 2008a: Subseasonal features of the Asian summer monsoon in the NCEP Climate Forecast System. Acta Oceanol. Sin., 27, 88103.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Zhang, V. E. Kousky, R. W. Higgins, S.-H. Yoo, J. Liang, and Y. Fan, 2008b: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 37553775, doi:10.1175/2008JCLI1961.1.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1991: The monsoon year—A new concept of the climatic year in the tropics. Bull. Amer. Meteor. Soc., 72, 13311338, doi:10.1175/1520-0477(1991)072<1331:TMYNCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., E. F. Wood, L. Luo, and M. Pan, 2011: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophys. Res. Lett., 38, L13402, doi:10.1029/2011GL047792.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., S. Yang, Z. Hu, R. Zhang, W. Wang, B. Huang, and F. Wang, 2013: Predictable patterns and predictive skills of monsoon rainfall in Northern Hemisphere summer in NCEP CFSv2 reforecasts. Climate Dyn., 40, 30713088, doi:10.1007/s00382-013-1772-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1206 468 39
PDF Downloads 757 235 16