Mechanisms Determining the Winter Atmospheric Response to the Atlantic Overturning Circulation

G. Gastineau Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by G. Gastineau in
Current site
Google Scholar
PubMed
Close
,
B. L’Hévéder Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by B. L’Hévéder in
Current site
Google Scholar
PubMed
Close
,
F. Codron Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by F. Codron in
Current site
Google Scholar
PubMed
Close
, and
C. Frankignoul Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

Search for other papers by C. Frankignoul in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In climate models, an intensification of the Atlantic meridional overturning circulation (AMOC) precedes a warming in the North Atlantic subpolar basin by a few years. In the IPSL-CM5A-LR model, this warming may explain the atmospheric response to the AMOC observed in winter, which resembles a negative phase of the North Atlantic Oscillation (NAO). To firmly establish the causality links between the ocean and the atmosphere and illustrate the underlying mechanisms in this model, ensembles of atmosphere-only simulations are conducted, prescribing the SST and sea ice anomalies that follow an AMOC intensification. In late winter, the North Atlantic SST and sea ice anomalies drive atmospheric circulation anomalies similar to those found in the coupled model. Simulations only driven by the SST anomalies related to the AMOC show that the largest oceanic influence is due to the warm subpolar SST anomaly, which enhances the oceanic heat release and decreases the lower-tropospheric baroclinicity in the region of maximum eddy growth, resulting in a weaker meridional eddy heat flux in the atmosphere. The transient eddy feedback leads to a negative NAO-like response. An AMOC intensification is also followed by less sea ice over the Labrador Sea and more sea ice over the Nordic seas. The simulations with full boundary forcing suggest that such anomalies act to strengthen both the poleward momentum flux and the upward heat flux into the polar stratosphere and lead to a stratospheric warming, which then reinforces the negative NAO signal in late winter.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0326.s1.

Corresponding author address: Dr. Guillaume Gastineau, Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, 4 place Jussieu, 75005 Paris, France. E-mail: guillaume.gastineau@upmc.fr

Abstract

In climate models, an intensification of the Atlantic meridional overturning circulation (AMOC) precedes a warming in the North Atlantic subpolar basin by a few years. In the IPSL-CM5A-LR model, this warming may explain the atmospheric response to the AMOC observed in winter, which resembles a negative phase of the North Atlantic Oscillation (NAO). To firmly establish the causality links between the ocean and the atmosphere and illustrate the underlying mechanisms in this model, ensembles of atmosphere-only simulations are conducted, prescribing the SST and sea ice anomalies that follow an AMOC intensification. In late winter, the North Atlantic SST and sea ice anomalies drive atmospheric circulation anomalies similar to those found in the coupled model. Simulations only driven by the SST anomalies related to the AMOC show that the largest oceanic influence is due to the warm subpolar SST anomaly, which enhances the oceanic heat release and decreases the lower-tropospheric baroclinicity in the region of maximum eddy growth, resulting in a weaker meridional eddy heat flux in the atmosphere. The transient eddy feedback leads to a negative NAO-like response. An AMOC intensification is also followed by less sea ice over the Labrador Sea and more sea ice over the Nordic seas. The simulations with full boundary forcing suggest that such anomalies act to strengthen both the poleward momentum flux and the upward heat flux into the polar stratosphere and lead to a stratospheric warming, which then reinforces the negative NAO signal in late winter.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0326.s1.

Corresponding author address: Dr. Guillaume Gastineau, Sorbonne Universités, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, 4 place Jussieu, 75005 Paris, France. E-mail: guillaume.gastineau@upmc.fr

Supplementary Materials

    • Supplemental Materials (PDF 2.77 MB)
Save
  • Allison, L., E. Hawkins, and T. Woollings, 2015: An event-based approach to understanding decadal fluctuations in the Atlantic meridional overturning circulation. Climate Dyn., 44, 163190, doi:10.1007/s00382-014-2271-9.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1985: Wave–mean-flow interaction in the middle atmosphere. Advances in Geophysics, Vol. 28A, Academic Press, 249275, doi:10.1016/S0065-2687(08)60226-5.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N. C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., B. Quesada, A. Arakélian, F. Codron, R. Vautard, and P. Yiou, 2013: North Atlantic dynamics and European temperature extremes in the IPSL model: Sensitivity to atmospheric resolution. Climate Dyn., 40, 22932310, doi:10.1007/s00382-012-1529-3.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, doi:10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., and G. Lesins, 2008: Multidecadal variability of Atlantic hurricane activity: 1851–2007. J. Geophys. Res., 113, D22106, doi:10.1029/2008JD010036.

    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, doi:10.1126/science.aab3980.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, doi:10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., L. Terray, P. Rogel, and C. Cassou, 2001: Mid latitude Atlantic SST influence on European winter climate variability in the NCEP reanalysis. Climate Dyn., 18, 331344, doi:10.1007/s003820100178.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, and R. Eade, 2011: Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett., 38, L14701, doi:10.1029/2011GL047949.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Escudier, R., J. Mignot, and D. Swingedouw, 2013: A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Climate Dyn., 40, 619636, doi:10.1007/s00382-012-1402-4.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1999: Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Climate Dyn., 15, 251268, doi:10.1007/s003820050280.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2008: Sub-surface signatures of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 35, L19602, doi:10.1029/2008GL034989.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27, 15331546, doi:10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, doi:10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y. O. Kwon, 2013: The influence of the AMOC variability on the atmosphere in CCSM3. J. Climate, 26, 97749790, doi:10.1175/JCLI-D-12-00862.1.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., and C. Frankignoul, 2016: On the feedback of the winter NAO-driven sea ice anomalies. Climate Dyn., doi:10.1007/s00382-015-2922-5, in press.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 51955216, doi:10.1175/JCLI-D-14-00472.1.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2012: Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Climate Dyn., 39, 3757, doi:10.1007/s00382-011-1109-y.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, doi:10.1175/JCLI-D-14-00424.1.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., F. D’Andrea, and C. Frankignoul, 2013: Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Climate Dyn., 40, 23112330, doi:10.1007/s00382-012-1333-0.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97, 14121417, doi:10.1073/pnas.97.4.1412.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodson, D. L., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, doi:10.1007/s00382-009-0571-2.

    • Search Google Scholar
    • Export Citation
  • Hodson, D. L., J. I. Robson, and R. T. Sutton, 2014: An anatomy of the cooling of the North Atlantic Ocean in the 1960s and 1970s. J. Climate, 27, 82298243, doi:10.1175/JCLI-D-14-00301.1.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2013: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, doi:10.1007/s00382-012-1411-3.

    • Search Google Scholar
    • Export Citation
  • Ionita, M., G. Lohmann, N. Rimbu, and P. Scholz, 2012: Dominant modes of diurnal temperature range variability over Europe and their relationships with large-scale atmospheric circulation and sea surface temperature anomaly patterns. J. Geophys. Res., 117, D15111, doi:10.1029/2011JD016669.

    • Search Google Scholar
    • Export Citation
  • Jamet, Q., T. Huck, O. Arzel, J. M. Campin, and A. C. de Verdière, 2016: Oceanic control of multidecadal variability in an idealized coupled GCM. Climate Dyn., doi:10.1007/s00382-015-2754-3, in press.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, doi:10.1126/science.288.5473.1984.

  • Kilbourne, K. H., T. M. Quinn, R. Webb, T. Guilderson, J. Nyberg, and A. Winter, 2008: Paleoclimate proxy perspective on Caribbean climate since the year 1751: Evidence of cooler temperatures and multidecadal variability. Paleoceanography, 23, PA3220, doi:10.1029/2008PA001598.

    • Search Google Scholar
    • Export Citation
  • King, M. P., M. Hell, and N. Keenlyside, 2015: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Climate Dyn., 46, 11851195, doi:10.1007/s00382-015-2639-5.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., M. S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers, 2011: Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nat. Commun., 2, 178, doi:10.1038/ncomms1186.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 16051614, doi:10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Hévéder, B., F. Codron, and M. Ghil, 2015: Impact of anomalous northward oceanic heat transport on global climate in a slab-ocean setting. J. Climate, 28, 26502664, doi:10.1175/JCLI-D-14-00377.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., H. F. Graf, and M. A. Giorgetta, 2007: Stationary planetary wave propagation in Northern Hemisphere winter? Climatological analysis of the refractive index. Atmos. Chem. Phys., 7, 183200, doi:10.5194/acp-7-183-2007.

    • Search Google Scholar
    • Export Citation
  • Lohmann, K., and Coauthors, 2014: The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Sci., 10, 227241, doi:10.5194/os-10-227-2014.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. Note du Pole de Modélisation 27, Institut Pierre-Simon Laplace, 209 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581, doi:10.1175/2011JCLI4002.1.

    • Search Google Scholar
    • Export Citation
  • Marini, C., and C. Frankignoul, 2014: An attempt to deconstruct the Atlantic multidecadal oscillation. Climate Dyn., 43, 607625, doi:10.1007/s00382-013-1852-3.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126, doi:10.1007/s00382-009-0640-6.

    • Search Google Scholar
    • Export Citation
  • Matei, D., J. Baehr, J. H. Jungclaus, H. Haak, W. A. Müller, and J. Marotzke, 2012: Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science, 335, 7679, doi:10.1126/science.1210299.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland–Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Medhaug, I., and T. Furevik, 2011: North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Sci., 7, 389404, doi:10.5194/os-7-389-2011.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., S. Janicot, and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, doi:10.1007/s00382-010-0867-2.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Olsen, S. M., B. Hansen, D. Quadfasel, and S. Østerhus, 2008: Observed and modelled stability of overflow across the Greenland–Scotland ridge. Nature, 455, 519522, doi:10.1038/nature07302.

    • Search Google Scholar
    • Export Citation
  • Omrani, N. E., N. S. Keenlyside, J. Bader, and E. Manzini, 2014: Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Climate Dyn., 42, 649663, doi:10.1007/s00382-013-1860-3.

    • Search Google Scholar
    • Export Citation
  • Ortega, P., J. Mignot, D. Swingedouw, F. Sévellec, and É. Guilyardi, 2015: Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog. Oceanogr., 137A, 237249, doi:10.1016/j.pocean.2015.06.009.

    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, doi:10.1038/ngeo955.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599, doi:10.1175/JCLI3521.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987, doi:10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 19872004, doi:10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Persechino, A., J. Mignot, D. Swingedouw, S. Labetoulle, and E. Guilyardi, 2013: Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Climate Dyn., 40, 23592380, doi:10.1007/s00382-012-1466-1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Ting, M. Cane, N. Naik, and J. Miller, 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21, 32613281, doi:10.1175/2007JCLI2134.1.

    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, doi:10.5194/os-10-29-2014.

    • Search Google Scholar
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, doi:10.1175/2009JCLI3100.1.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., and H. Tokinaga, 2002: Baroclinic instability in high latitudes induced by polar vortex: A connection to the Arctic Oscillation. J. Atmos. Sci., 59, 6982, doi:10.1175/1520-0469(2002)059<0069:BIIHLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, and C. Li, 2014: North Atlantic multidecadal SST oscillation: External forcing versus internal variability. J. Mar. Syst., 133, 2738, doi:10.1016/j.jmarsys.2013.07.006.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, doi:10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vial, J., T. J. Osborn, and F. Lott, 2013: Sudden stratospheric warmings and tropospheric blockings in a multi-century simulation of the IPSL-CM5A coupled climate model. Climate Dyn., 40, 24012414, doi:10.1007/s00382-013-1675-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, doi:10.1002/jgrc.20390.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA, 112, 45704575, doi:10.1073/pnas.1422296112.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 146 14
PDF Downloads 248 58 8