Effects of Irrigation on Summer Precipitation over the United States

Lisi Pei State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China, and Department of Geography and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan

Search for other papers by Lisi Pei in
Current site
Google Scholar
PubMed
Close
,
Nathan Moore Department of Geography and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan

Search for other papers by Nathan Moore in
Current site
Google Scholar
PubMed
Close
,
Shiyuan Zhong Department of Geography and Center for Global Change and Earth Observations, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
,
Anthony D. Kendall Department of Geological Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Anthony D. Kendall in
Current site
Google Scholar
PubMed
Close
,
Zhiqiu Gao State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhiqiu Gao in
Current site
Google Scholar
PubMed
Close
, and
David W. Hyndman Department of Geological Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by David W. Hyndman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Irrigation’s effects on precipitation during an exceptionally dry summer (June–August 2012) in the United States were quantified by incorporating a novel dynamic irrigation scheme into the Weather Research and Forecasting (WRF) Model. The scheme is designed to represent a typical application strategy for farmlands across the conterminous United States (CONUS) and a satellite-derived irrigation map was incorporated into the WRF-Noah-Mosaic module to realistically trigger the irrigation. Results show that this new irrigation approach can dynamically generate irrigation water amounts that are in close agreement with the actual irrigation water amounts across the high plains (HP), where the prescribed scheme best matches real-world irrigation practices. Surface energy and water budgets have been substantially altered by irrigation, leading to modified large-scale atmospheric circulations. In the studied dry summer, irrigation was found to strengthen the dominant interior high pressure system over the southern and central United States and deepen the trough over the upper Midwest. For the HP and central United States, the rainfall amount is slightly reduced over irrigated areas, likely as a result of a reduction in both local convection and large-scale moisture convergence resulting from interactions and feedbacks between the land surface and atmosphere. In areas downwind of heavily irrigated regions, precipitation is enhanced, resulting in a 20%–100% reduction in the dry biases (relative to the observations) simulated over a large portion of the downwind areas without irrigation in the model. The introduction of irrigation reduces the overall mean biases and root-mean-square errors in the simulated daily precipitation over the CONUS.

Current affiliation: University Corporation for Atmospheric Research, Boulder, Colorado, and NOAA/Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan.

Corresponding author address: Lisi Pei, NOAA/Great Lakes Environmental Research Laboratory, 4840 S. State Rd., Ann Arbor, MI 48108. E-mail: lisipei@msu.edu

Abstract

Irrigation’s effects on precipitation during an exceptionally dry summer (June–August 2012) in the United States were quantified by incorporating a novel dynamic irrigation scheme into the Weather Research and Forecasting (WRF) Model. The scheme is designed to represent a typical application strategy for farmlands across the conterminous United States (CONUS) and a satellite-derived irrigation map was incorporated into the WRF-Noah-Mosaic module to realistically trigger the irrigation. Results show that this new irrigation approach can dynamically generate irrigation water amounts that are in close agreement with the actual irrigation water amounts across the high plains (HP), where the prescribed scheme best matches real-world irrigation practices. Surface energy and water budgets have been substantially altered by irrigation, leading to modified large-scale atmospheric circulations. In the studied dry summer, irrigation was found to strengthen the dominant interior high pressure system over the southern and central United States and deepen the trough over the upper Midwest. For the HP and central United States, the rainfall amount is slightly reduced over irrigated areas, likely as a result of a reduction in both local convection and large-scale moisture convergence resulting from interactions and feedbacks between the land surface and atmosphere. In areas downwind of heavily irrigated regions, precipitation is enhanced, resulting in a 20%–100% reduction in the dry biases (relative to the observations) simulated over a large portion of the downwind areas without irrigation in the model. The introduction of irrigation reduces the overall mean biases and root-mean-square errors in the simulated daily precipitation over the CONUS.

Current affiliation: University Corporation for Atmospheric Research, Boulder, Colorado, and NOAA/Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan.

Corresponding author address: Lisi Pei, NOAA/Great Lakes Environmental Research Laboratory, 4840 S. State Rd., Ann Arbor, MI 48108. E-mail: lisipei@msu.edu
Save
  • Adegoke, J. O., R. A. Pielke, J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev., 131, 556564, doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alter, R. E., Y. Fan, B. R. Lintner, and C. P. Weaver, 2015: Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the midwestern United States. J. Hydrometeor., 16, 17171735, doi:10.1175/JHM-D-14-0115.1.

    • Search Google Scholar
    • Export Citation
  • Andretta, T. A., and D. S. Hazen, 1998: Doppler radar analysis of a Snake River plain convergence event. Wea. Forecasting, 13, 482491, doi:10.1175/1520-0434(1998)013<0482:DRAOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Awan, N. K., H. Truhetz, and A. Gobiet, 2011: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the Alpine region: An ensemble-based analysis. J. Climate, 24, 31073123, doi:10.1175/2011JCLI3674.1.

    • Search Google Scholar
    • Export Citation
  • Bagley, J. E., A. R. Desai, K. J. Harding, P. K. Snyder, and J. A. Foley, 2014: Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? J. Climate, 27, 345361, doi:10.1175/JCLI-D-12-00369.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and P. T. Schickedanz, 1984: The effect of irrigation on warm season precipitation in the southern Great Plains. J. Climate Appl. Meteor., 23, 865888, doi:10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Basso, B., A. D. Kendall, and D. W. Hyndman, 2013: The future of agriculture over the Ogallala Aquifer: Solutions to grow crops more efficiently with limited water. Earth’s Future, 1, 3941, doi:10.1002/2013EF000107.

    • Search Google Scholar
    • Export Citation
  • Basso, B., D. W. Hyndman, A. D. Kendall, P. R. Grace, and G. P. Robertson, 2015: Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS One, 10, e0127333, doi:10.1371/journal.pone.0127333.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, doi:10.1073/pnas.0700144104.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., G. Myhre, and A. Myhre, 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597603, doi:10.1007/s00382-004-0402-4.

    • Search Google Scholar
    • Export Citation
  • Brown, J. F., and M. S. Pervez, 2014: Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst., 127, 2840, doi:10.1016/j.agsy.2014.01.004.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eastman, J. L., M. B. Coughenour, and R. A. Pielke, 2001: Does grazing affect regional climate? J. Hydrometeor., 2, 243253, doi:10.1175/1525-7541(2001)002<0243:DGARC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Erlingis, J. M., and A. P. Barros, 2014: A study of the role of daytime land–atmosphere interactions on nocturnal convective activity in the southern Great Plains during CLASIC. J. Hydrometeor., 15, 19321953, doi:10.1175/JHM-D-14-0016.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, L. J., W. Steffen, B. F. Jönsson, C. Folke, M. Falkenmark, and Å. Johannessen, 2005: Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA, 102, 76127617, doi:10.1073/pnas.0500208102.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., D. P. Lettenmaier, and T. Skaugen, 2006: Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol., 324, 210223, doi:10.1016/j.jhydrol.2005.09.028.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012a: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012b: Modeling the atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 13, 16871703, doi:10.1175/JHM-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Huber, D., D. Mechem, and N. Brunsell, 2014: The effects of Great Plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate, 2, 103128, doi:10.3390/cli2020103.

    • Search Google Scholar
    • Export Citation
  • Jimenez, P. A., J. V.-G. de Arellano, J. Navarro, and J. F. Gonzalez-Rouco, 2014: Understanding land–atmosphere interactions across a range of spatial and temporal scales. Bull. Amer. Meteor. Soc., 95, ES14ES17, doi:10.1175/BAMS-D-13-00029.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization in mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kanamaru, H., and M. Kanamitsu, 2008: Model diagnosis of nighttime minimum temperature warming during summer due to irrigation in the California Central Valley. J. Hydrometeor., 9, 10611072, doi:10.1175/2008JHM967.1.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and K. C. Mo, 2003: Dynamical effect of land surface processes on summer precipitation over the southwestern United States. J. Climate, 16, 496509, doi:10.1175/1520-0442(2003)016<0496:DEOLSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Sato, and S. Ohsawa, 2008: Impact of extensive irrigation on the formation of cumulus clouds. Geophys. Res. Lett., 35, L01806, doi:10.1029/2007GL032435.

    • Search Google Scholar
    • Export Citation
  • Kenny, J. F., N. L. Barber, S. S. Hutson, K. S. Linsey, J. K. Lovelace, and M. A. Maupin, 2009: Estimated use of water in the United States in 2005. U.S. Geological Survey Circular 1344, 52 pp. [Available online at http://pubs.usgs.gov/circ/1344/pdf/c1344.pdf.]

  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, doi:10.1029/2006GL028679.

    • Search Google Scholar
    • Export Citation
  • Lee, E., W. J. Sacks, T. N. Chase, and J. A. Foley, 2011: Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res., 116, D08114, doi:10.1029/2010JD014740.

    • Search Google Scholar
    • Export Citation
  • Leng, G., M. Huang, Q. Tang, W. J. Sacks, H. Lei, and L. R. Leung, 2013: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res. Atmos., 118, 97899803, doi:10.1002/jgrd.50792.

    • Search Google Scholar
    • Export Citation
  • Leng, G., M. Huang, Q. Tang, H. Gao, and L. R. Leung, 2014: Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrometeor., 15, 957972, doi:10.1175/JHM-D-13-049.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., E. Bou-Zeid, M. Barlage, F. Chen, and J. A. Smith, 2013: Development and evaluation of a mosaic approach in the WRF-Noah framework. J. Geophys. Res. Atmos., 118, 11 91811 935, doi:10.1002/2013JD020657.

    • Search Google Scholar
    • Export Citation
  • Li, M., Z. Mao, Y. Song, M. Liu, and X. Huang, 2015: Impacts of the decadal urbanization on thermally induced circulations in eastern China. J. Appl. Meteor. Climatol., 54, 259282, doi:10.1175/JAMC-D-14-0176.1.

    • Search Google Scholar
    • Export Citation
  • Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., and C. Bonfils, 2008: The effect of irrigation on regional temperatures: A spatial and temporal analysis of trends in California, 1934–2002. J. Climate, 21, 20632071, doi:10.1175/2007JCLI1755.1.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., C. J. Bonfils, L. M. Kueppers, and M. A. Snyder, 2008: Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett., 35, L09705, doi:10.1029/2008GL034145.

    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, doi:10.1175/2008JCLI2703.1.

    • Search Google Scholar
    • Export Citation
  • Lohar, D., and B. Pal, 1995: The effect of irrigation on premonsoon season precipitation over south west Bengal, India. J. Climate, 8, 25672570, doi:10.1175/1520-0442(1995)008<2567:TEOIOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and Coauthors, 2003: Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains. J. Geophys. Res., 108, 8843, doi:10.1029/2002JD003246.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and K. G. Hubbard, 2004: An analysis of simulated long-term soil moisture data for three land uses under contrasting hydroclimatic conditions in the northern Great Plains. J. Hydrometeor., 5, 160179, doi:10.1175/1525-7541(2004)005<0160:AAOSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., S. A. Foster, T. Keeling, K. G. Hubbard, C. Carlson, and R. Leeper, 2006: Impacts of irrigation on 20th century temperature in the northern Great Plains. Global Planet. Change, 54, 118, doi:10.1016/j.gloplacha.2005.10.004.

    • Search Google Scholar
    • Export Citation
  • Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S. Linsey, 2014: Estimated use of water in the United States in 2010. U.S. Geological Survey Circular 1405, 56 pp., doi:10.3133/cir1405.

  • McGuire, V. L., 2013: Water-level and storage changes in the High Plains aquifer, predevelopment to 2011 and 2009-11. U.S. Geological Survey Scientific Investigations Rep. 20125291, 15 pp. [Available online at http://pubs.usgs.gov/sir/2012/5291/sir2012-5291.pdf.]

  • Medvigy, D., R. L. Walko, M. J. Otte, and R. Avissar, 2013: Simulated changes in northwest U.S. climate in response to Amazon deforestation. J. Climate, 26, 91159136, doi:10.1175/JCLI-D-12-00775.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moore, N., and S. Rojstaczer, 2001: Irrigation-induced rainfall and the Great Plains. J. Appl. Meteor., 40, 12971309, doi:10.1175/1520-0450(2001)040<1297:IIRATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, N., and S. Rojstaczer, 2002: Irrigation’s influence on precipitation: Texas High Plains, U.S.A. Geophys. Res. Lett., 29, doi:10.1029/2002GL014940.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2012: NCAR Command Language (version 6.2.0). UCAR/NCAR/CISL/VETS. [Available online at http://dx.doi.org/10.5065/D6WD3XH5.]

  • NCDC, 2012: Drought – 2012. [Available online at http://www.ncdc.noaa.gov/sotc/drought/2012/6.]

  • Ozdogan, M., M. Rodell, H. K. Beaudoing, and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, doi:10.1175/2009JHM1116.1.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., K. C. Mo, and J. Nogués-Paegle, 1996: Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods. Mon. Wea. Rev., 124, 345361, doi:10.1175/1520-0493(1996)124<0345:DOSPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pei, L., N. Moore, S. Zhong, L. Luo, D. W. Hyndman, W. E. Heilman, and Z. Gao, 2014: WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States. J. Climate, 27, 77037724, doi:10.1175/JCLI-D-14-00015.1.

    • Search Google Scholar
    • Export Citation
  • Pervez, M. S., and J. F. Brown, 2010: Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens., 2, 23882412, doi:10.3390/rs2102388.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151, doi:10.1029/1999RG000072.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 2011: Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, doi:10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2012: Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth Syst. Dyn., 3, 213231, doi:10.5194/esd-3-213-2012.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and T. Vukicevic, 2010: Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon. Wea. Rev., 138, 15131535, doi:10.1175/2009MWR3094.1.

    • Search Google Scholar
    • Export Citation
  • Pu, B., and R. E. Dickinson, 2014: Diurnal spatial variability of Great Plains summer precipitation related to the dynamics of the low-level jet. J. Atmos. Sci., 71, 18071817, doi:10.1175/JAS-D-13-0243.1.

    • Search Google Scholar
    • Export Citation
  • Puma, M. J., and B. I. Cook, 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res., 115, D16120, doi:10.1029/2010JD014122.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, doi:10.1175/JHM-D-12-0134.1.

    • Search Google Scholar
    • Export Citation
  • Sacks, W., B. Cook, N. Buenning, S. Levis, and J. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Search Google Scholar
    • Export Citation
  • Saeed, F., S. Hagemann, and D. Jacob, 2009: Impact of irrigation on the South Asian summer monsoon. Geophys. Res. Lett., 36, L20711, doi:10.1029/2009GL040625.

    • Search Google Scholar
    • Export Citation
  • Segal, M., Z. Pan, R. W. Turner, and E. S. Takle, 1998: On the potential impact of irrigated areas in North America on summer rainfall caused by large-scale systems. J. Appl. Meteor., 37, 325331, doi:10.1175/1520-0450-37.3.325.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7, 10901112, doi:10.1175/JHM533.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., 2010: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact., 14, doi:10.1175/2010EI280.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., J. Li, K.-l. Hsu, and X. Gao, 2011: How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. J. Geophys. Res., 116, D06102, doi:10.1029/2010JD014775.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., J. Li, K. Hsu, and X. Gao, 2012: Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California’s Central Valley agricultural regions. J. Geophys. Res., 117, D06107, doi:10.1029/2011JD016978.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River plain and central Idaho mountains. Wea. Forecasting, 16, 301314, doi:10.1175/1520-0434(2001)016<0301:TDOACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., R. W. A. Hutjes, T. Stacke, A. Wiltshire, and P. Lucas-Picher, 2014: Effects of irrigation in India on the atmospheric water budget. J. Hydrometeor., 15, 10281050, doi:10.1175/JHM-D-13-078.1.

    • Search Google Scholar
    • Export Citation
  • USDA, 2013: Farm and ranch irrigation survey (2013). Accessed 3 April 2015. [Available online at http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Farm_and_Ranch_Irrigation_Survey/.]

  • USGS, 2000: Estimated use of water in the United States in 2000. [Available online at http://pubs.usgs.gov/circ/2004/circ1268/.]

  • Weaver, S. J., and S. Nigam, 2011: Recurrent supersynoptic evolution of the Great Plains low-level jet. J. Climate, 24, 575582, doi:10.1175/2010JCLI3445.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., P. A. Dirmeyer, D. Wisser, M. G. Bosilovich, and D. M. Mocko, 2013: Where does the irrigation water go? An estimate of the contribution of irrigation to precipitation using MERRA. J. Hydrometeor., 14, 275289, doi:10.1175/JHM-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and J. C. Doran, 1995: A modeling study of the effects of inhomogeneous surface fluxes on boundary-layer properties. J. Atmos. Sci., 52, 31293142, doi:10.1175/1520-0469(1995)052<3129:AMSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, doi:10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1734 673 213
PDF Downloads 1009 310 30