Cluster Analysis of Tropical Cyclone Tracks over the Western North Pacific Using a Self-Organizing Map

Han-Kyoung Kim Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Han-Kyoung Kim in
Current site
Google Scholar
PubMed
Close
and
Kyong-Hwan Seo Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea

Search for other papers by Kyong-Hwan Seo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclone (TC) tracks over the western North Pacific (WNP) in 1979–2013 are classified by a self-organizing map technique. A false detection rate method identifies five optimal TC clusters. Physical mechanisms of the intraseasonal and interannual variations in the TC genesis frequency are investigated for each cluster. The five clusters are separated by genesis location, from the westernmost area (east of the Philippines, C1) to the easternmost (~150°E, C5) onset area over the WNP. The intraseasonal Madden–Julian oscillation (MJO) significantly affects the genesis frequency for all clusters except for C5. In particular, MJO phases 5 and 6 (1 and 2) provide significantly favorable (unfavorable) large-scale conditions for TC genesis. Two types of El Niño–Southern Oscillation influence the interannual variation of the genesis frequency for only C2 (generated over the western Philippine Sea and East China Sea) and C4 (formed near the eastern Philippine Sea). Enhanced eastern Pacific sea surface temperature (SST) anomalies lead to a ~40% decrease in the C2 TC frequency through a reversed Walker circulation with downward motion over the WNP. Conversely, increased central Pacific SST anomalies generate a cyclonic Rossby wave northwest of the forcing, inducing a significant increase (~50%) in the C4 TC frequency. The interannual variability for the C5 TCs is strongly controlled by the variation of the western Pacific subtropical high (WPSH). A positive WPSH variation reduces the C5 TC genesis frequency by 66%, while negative WPSH anomalies enhance the frequency by 50%. A prediction scheme using information from the first four 6-h TC locations demonstrates a skillful determination of TC clusters.

Corresponding author address: Dr. Kyong-Hwan Seo, Department of Atmospheric Sciences, Pusan National University, Busan 609-735, South Korea. E-mail: khseo@pusan.ac.kr

Abstract

Tropical cyclone (TC) tracks over the western North Pacific (WNP) in 1979–2013 are classified by a self-organizing map technique. A false detection rate method identifies five optimal TC clusters. Physical mechanisms of the intraseasonal and interannual variations in the TC genesis frequency are investigated for each cluster. The five clusters are separated by genesis location, from the westernmost area (east of the Philippines, C1) to the easternmost (~150°E, C5) onset area over the WNP. The intraseasonal Madden–Julian oscillation (MJO) significantly affects the genesis frequency for all clusters except for C5. In particular, MJO phases 5 and 6 (1 and 2) provide significantly favorable (unfavorable) large-scale conditions for TC genesis. Two types of El Niño–Southern Oscillation influence the interannual variation of the genesis frequency for only C2 (generated over the western Philippine Sea and East China Sea) and C4 (formed near the eastern Philippine Sea). Enhanced eastern Pacific sea surface temperature (SST) anomalies lead to a ~40% decrease in the C2 TC frequency through a reversed Walker circulation with downward motion over the WNP. Conversely, increased central Pacific SST anomalies generate a cyclonic Rossby wave northwest of the forcing, inducing a significant increase (~50%) in the C4 TC frequency. The interannual variability for the C5 TCs is strongly controlled by the variation of the western Pacific subtropical high (WPSH). A positive WPSH variation reduces the C5 TC genesis frequency by 66%, while negative WPSH anomalies enhance the frequency by 50%. A prediction scheme using information from the first four 6-h TC locations demonstrates a skillful determination of TC clusters.

Corresponding author address: Dr. Kyong-Hwan Seo, Department of Atmospheric Sciences, Pusan National University, Busan 609-735, South Korea. E-mail: khseo@pusan.ac.kr
Save
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300.

    • Search Google Scholar
    • Export Citation
  • Bensaid, A. M., L. O. Hall, J. C. Bezdek, L. P. Clarke, M. L. Silbiger, J. A. Arrington, and R. F. Murthagh, 1996: Validity-guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Syst., 4, 112123, doi:10.1109/91.493905.

    • Search Google Scholar
    • Export Citation
  • Bezdek, J. C., 1981: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, 256 pp.

  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, doi:10.1175/JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007c: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, doi:10.1175/JCLI4203.1.

    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., S. N. Hameed, and K. J. Ha, 2012: Nonlinear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 69756988, doi:10.1175/JCLI-D-11-00512.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2002: Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate, 15, 26782689, doi:10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunn, J. C., 1973: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster. J. Cybern., 3, 3257, doi:10.1080/01969727308546046.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and K. B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Res., 25, 4354, doi:10.3354/cr025043.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982, doi:10.1175/1520-0493(2001)129<2970:TMOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995a: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246, doi:10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995b: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 12471268, doi:10.1175/1520-0493(1995)123<1247:LSCVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., H.-S. Kim, J.-H. Jeong, and S.-W. Son, 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702, doi:10.1029/2009GL037163.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., J.-H. Kim, C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, doi:10.1175/2010JCLI3751.1.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1990: The self-organizing map. Proc. IEEE, 78, 14641480, doi:10.1109/5.58325.

  • Kohonen, T., 1997: Self-Organizing Maps. 2nd ed. Springer Series in Information Sciences, Vol. 30, Springer-Verlag, 426 pp.

  • Lander, M. A., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western north Pacific. Wea. Forecasting, 11, 170186, doi:10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, J. Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I. S. Kang, 2012: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 409509, doi:10.1007/s00382-012-1544-4.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013a: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 29042918, doi:10.1175/JCLI-D-12-00210.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 29192930, doi:10.1175/JCLI-D-12-00211.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, J. C. L. Chan, and P. Huang, 2012: Asymmetric modulation of western North Pacific cyclogenesis by the Madden–Julian oscillation under ENSO conditions. J. Climate, 25, 53745385, doi:10.1175/JCLI-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2012: Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudevasu, Eds., Nova Science Publishers, 61–94.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, doi:10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in windshear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–34.

  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767, doi:10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J.-K. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, doi:10.1175/MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W. Wang, J. Gottschalck, Q. Zhang, J.-K. E. Schemm, W. R. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, doi:10.1073/pnas.1214626110.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., X. Wen, R. Huang, and R. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140150, doi:10.1175/MWR-D-11-00078.1.

    • Search Google Scholar
    • Export Citation
  • Xie, X. L., and G. A. Beni, 1991: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell., 13, 841845, doi:10.1109/34.85677.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., T. Li, and M. Peng, 2013: Tropical cyclogenesis in the western North Pacific as revealed by the 2008–09 YOTC data. Wea. Forecasting, 28, 10381056, doi:10.1175/WAF-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., and H. Ishikawa, 2013: Environmental factors contributing to tropical cyclone genesis over the western North Pacific. Mon. Wea. Rev., 141, 451467, doi:10.1175/MWR-D-11-00309.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., H.-F. Graf, Y. Leung, and M. Herong, 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523, doi:10.1175/JCLI-D-11-00488.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, doi:10.1175/2008JCLI2527.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1765 344 31
PDF Downloads 1389 220 28