The Sensitivity of the Hydrological Cycle to Internal Climate Variability versus Anthropogenic Climate Change

Ryan J. Kramer Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Ryan J. Kramer in
Current site
Google Scholar
PubMed
Close
and
Brian J. Soden Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian J. Soden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0408.s1.

Corresponding author address: Ryan J. Kramer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149. E-mail: rkramer@rsmas.miami.edu

Abstract

In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0408.s1.

Corresponding author address: Ryan J. Kramer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149. E-mail: rkramer@rsmas.miami.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.71 MB)
Save
  • Allan, R. P., 2006: Variability in clear-sky longwave radiative cooling of the atmosphere. J. Geophys. Res., 111, D22105, doi:10.1029/2006JD007304.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552, doi:10.1007/s10712-012-9213-z.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future climate changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, doi:10.1175/2008JCLI2759.1.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., T. M. Smith, M. R. P. Sapiano, and J. Janowiak, 2010: The observed sensitivity of the global hydrological cycle to changes in surface temperature. Environ. Res. Lett., 5, 035201, doi:10.1088/1748-9326/5/3/035201.

    • Search Google Scholar
    • Export Citation
  • Bala, G., K. Caldeira, and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Search Google Scholar
    • Export Citation
  • Bony, S., G. Bellon, D. Klocke, S. Sherwood, S. Fermepin, and S. Devil, 2013: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6, 447451, doi:10.1038/ngeo1799.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J. Geophys. Res., 111, D14317, doi:10.1029/2005JD006713.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249253, doi:10.1038/nature15770.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2013: The seasonal cycle of atmospheric heating and temperature. J. Climate, 26, 49624980, doi:10.1175/JCLI-D-12-00713.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312, doi:10.1175/2007JCLI1935.1.

    • Search Google Scholar
    • Export Citation
  • Fildier, B., and W. D. Collins, 2015: Origins of climate model discrepancies in atmospheric shortwave absorption and global precipitation changes. Geophys. Res. Lett., 42, 87498757, doi:10.1002/2015GL065931.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., M. Meinshausen, T. Schneider von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • John, V. O., R. P. Allan, and B. J. Soden, 2009: How robust are observed and simulated precipitation responses to tropical ocean warming? Geophys. Res. Lett., 36, L14702, doi:10.1029/2009GL038276.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and M. J. Webb, 2008: Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett., 35, L16706, doi:10.1029/2008GL034838.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., M. J. Webb, M. Yoshimori, and T. Yokohata, 2015: The cloud radiative effect on the atmospheric energy budget and global mean precipitation. Climate Dyn., 44, 23012325, doi:10.1007/s00382-014-2174-9.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322, doi:10.1256/smsqj.47516.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., R. P. Allan, M. P. Byrne, and M. Previdi, 2012: Energetic constraints on precipitation under climate change. Surv. Geophys., 33, 585608, doi:10.1007/s10712-011-9159-6.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., 2010: Radiative feedbacks on global precipitation. Environ. Res. Lett., 5, 025211, doi:10.1088/1748-9326/5/2/025211.

  • Sherwood, S., and Q. Fu, 2014: A drier future? Science, 343, 737739, doi:10.1126/science.1247620.

  • Soden, B. J., A. J. Broccoli, and R. S. Hemler, 2004: On the use of cloud forcing to estimate cloud feedback. J. Climate, 17, 36613665, doi:10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., A. Slingo, M. J. Webb, P. J. Minnett, P. H. Daum, L. Kleinman, I. Wittmeyer, and D. A. Randall, 1994: Observations of the Earth’s radiation budget in relation to atmospheric hydrology: 4. Atmospheric column radiative cooling over the world’s oceans. J. Geophys. Res., 99, 18 58518 604, doi:10.1029/94JD01151.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414416, doi:10.1038/35000184.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Yang, F., A. Kumar, M. E. Schlesinger, and W. Wang, 2003: Intensity of the hydrological cycles in warmer climates. J. Climate, 16, 24192423, doi:10.1175/2779.1.

    • Search Google Scholar
    • Export Citation