Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models

Petter Lind Swedish Meteorological and Hydrological Institute, Norrköping, and Department of Meteorology, Sweden Stockholm University, Stockholm, Sweden

Search for other papers by Petter Lind in
Current site
Google Scholar
PubMed
Close
,
David Lindstedt Swedish Meteorological and Hydrological Institute, Norrköping, and Department of Meteorology, Sweden Stockholm University, Stockholm, Sweden

Search for other papers by David Lindstedt in
Current site
Google Scholar
PubMed
Close
,
Erik Kjellström Swedish Meteorological and Hydrological Institute, Norrköping, and Department of Meteorology, Sweden Stockholm University, Stockholm, Sweden

Search for other papers by Erik Kjellström in
Current site
Google Scholar
PubMed
Close
, and
Colin Jones National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom, and Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Search for other papers by Colin Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-impact, locally intense rainfall episodes represent a major socioeconomic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HIRLAM–ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) Climate (HCLIM) regional model with three different setups: two using convection parameterization at 15- and 6.25-km horizontal resolution (the latter within the “gray zone” scale), with lateral boundary conditions provided by ERA-Interim and integrated over a pan-European domain, and one with explicit convection at 2-km resolution (HCLIM2) over the Alpine region driven by the 15-km model. Seven summer seasons were sampled and validated against two high-resolution observational datasets. All HCLIM versions underestimate the number of dry days and hours by 20%–40% and overestimate precipitation over the Alpine ridge. Also, only modest added value was found for gray-zone resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at subdaily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and mesoscale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in a convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.

Denotes Open Access content.

Corresponding author address: Petter Lind, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden. E-mail: petter.lind@smhi.se

Abstract

High-impact, locally intense rainfall episodes represent a major socioeconomic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HIRLAM–ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) Climate (HCLIM) regional model with three different setups: two using convection parameterization at 15- and 6.25-km horizontal resolution (the latter within the “gray zone” scale), with lateral boundary conditions provided by ERA-Interim and integrated over a pan-European domain, and one with explicit convection at 2-km resolution (HCLIM2) over the Alpine region driven by the 15-km model. Seven summer seasons were sampled and validated against two high-resolution observational datasets. All HCLIM versions underestimate the number of dry days and hours by 20%–40% and overestimate precipitation over the Alpine ridge. Also, only modest added value was found for gray-zone resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at subdaily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and mesoscale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in a convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.

Denotes Open Access content.

Corresponding author address: Petter Lind, Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden. E-mail: petter.lind@smhi.se
Save
  • Adam, J. C., and D. P. Lettenmeier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, doi:10.1002/2014JD021478.

    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, doi:10.1002/2014GL062588.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Bénard, P., J. Vivoda, J. Mašek, P. Smolíková, K. Yessad, C. Smith, R. Brožková, and J.-F. Geleyn, 2010: Dynamical kernel of the Aladin–NH spectral limited-area model: Revised formulation and sensitivity experiments. Quart. J. Roy. Meteor. Soc., 136, 155169, doi:10.1002/qj.522.

    • Search Google Scholar
    • Export Citation
  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433443, doi:10.1127/0941-2948/2008/0316.

    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, N. M. Roberts, and C. A. T. Ferro, 2014: The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J. Climate, 27, 61556174, doi:10.1175/JCLI-D-13-00723.1.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp.

  • Cuxart, J., P. Bougeault, and J.-L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930951, doi:10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831, doi:10.1029/91JD02472.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

  • Feldmann, H., G. Schädler, H.-J. Panitz, and C. Kottmeier, 2013: Near future changes of extreme precipitation over complex terrain in central Europe derived from high resolution RCM ensemble simulations. Int. J. Climatol., 33, 19641977, doi:10.1002/joc.3564.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., and J. Segers, 2003: Inference for clusters of extreme values. J. Roy. Stat. Soc., 65, 545556, doi:10.1111/1467-9868.00401.

    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, doi:10.1007/s00382-014-2242-1.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Frei, C., H. C. Davies, J. Gurtz, and C. Schär, 2000: Climate dynamics and extreme precipitation and flood events in central Europe. Integr. Assess., 1, 281300, doi:10.1023/A:1018983226334.

    • Search Google Scholar
    • Export Citation
  • Frei, C., R. Schöll, S. Fukutome, J. Schmidli, and P. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, doi:10.1029/2005JD005965.

    • Search Google Scholar
    • Export Citation
  • Früh, B., H. Feldmann, H.-J. Panitz, G. Schädler, D. Jacob, P. Lorenz, and K. Keuler, 2010: Determination of precipitation return values in complex terrain and their evaluation. J. Climate, 23, 22572274, doi:10.1175/2009JCLI2685.1.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Y. Xu, Z. Zhao, J. S. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173185, doi:10.1007/s00704-005-0214-4.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brožková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Controls on and impacts of the diurnal cycle of deep convective precipitation. J. Adv. Model. Earth Syst., 5, 801815, doi:10.1002/2012MS000216.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc., 52, 105124.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R., and J. R. Wallis, 1987: Parameter and quantile estimation for the generalized pareto distribution. Technometrics, 29, 339349, doi:10.1080/00401706.1987.10488243.

    • Search Google Scholar
    • Export Citation
  • Isotta, F. A., and Coauthors, 2014: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol., 34, 16571675, doi:10.1002/joc.3794.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, C. A. Senior, and M. J. Roberts, 2012: Realism of rainfall in a very high-resolution regional climate model. J. Climate, 25, 57915806, doi:10.1175/JCLI-D-11-00562.1.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., N. M. Roberts, H. J. Fowler, M. J. Roberts, S. C. Chan, and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, doi:10.1038/nclimate2258.

    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and Coauthors, 2005: Summer floods in central Europe—Climate change track? Nat. Hazards, 36, 165189, doi:10.1007/s11069-004-4547-6.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Le Moigne, P., and Coauthors, 2012: Surfex scientific documentation. CNRM Tech. Rep., 237 pp. [Available online at http://www.cnrm-game-meteo.fr/surfex/IMG/pdf/surfex_scidoc_v2.pdf.]

  • Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, doi:10.1088/1748-9326/5/2/025208.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindstedt, D., P. Lind, E. Kjellström, and C. Jones, 2015: A new regional climate model operating at the meso-gamma scale: Performance over Europe. Tellus, 67A, 24138, doi:10.3402/tellusa.v67.24138.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Mašek, J., 2005: New parameterization of cloud optical properties proposed for model ALARO-0. Regional Cooperation for Limited Area Modeling in Central Europe Rep., 12 pp. [Available online at http://www.rclace.eu/?page=74.]

  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344, doi:10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, doi:10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: Mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Proc. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Piriou, J.-M., J.-L. Redelsperger, J.-F. Geleyn, J.-P. Lafore, and F. Guichard, 2007: An approach for convective parameterization with memory: Separating microphysics and transport in grid-scale equations. J. Atmos. Sci., 64, 41274139, doi:10.1175/2007JAS2144.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., A. Gobiet, M. Suklitsch, H. Truhetz, N. K. Awan, K. Keuler, and G. Georgievski, 2013: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, doi:10.1007/s00382-013-1744-6.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, doi:10.1007/s00382-015-2589-y.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., E. Coppola, C. Piani, and F. Giorgi, 2010: Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Climate Dyn., 35, 685711, doi:10.1007/s00382-009-0607-7.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., S. J. Cole, R. M. Forbes, R. J. Moore, and D. Boswell, 2009: Use of high-resolution NWP rainfall and river flow forecasts for advance warning of the Carlisle flood, north-west England. Meteor. Appl., 16, 2334, doi:10.1002/met.94.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. Ferretti, 2001: Mechanisms of intense alpine rainfall. J. Atmos. Sci., 58, 17321749, doi:10.1175/1520-0469(2001)058<1732:MOIAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rubel, F., and M. Hantel, 2001: Baltex 1/6-degree daily precipitation climatology 1996–1998. Meteor. Atmos. Phys., 77, 155166, doi:10.1007/s007030170024.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Villanueva, V., M. Borga, D. Zoccatelli, L. Marchi, E. Gaume, and U. Ehret, 2012: Extreme flood response to short-duration convective rainfall in south-west Germany. Hydrol. Earth Syst. Sci., 16, 15431559, doi:10.5194/hess-16-1543-2012.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Sharma, A., and H.-P. Huang, 2012: Regional climate simulation for Arizona: Impact of resolution on precipitation. Adv. Meteor., 2012, 505726, doi:10.1155/2012/505726.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., and D. Jacob, 2009: Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J. Geophys. Res., 114, D12113, doi:10.1029/2008JD010652.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., T. Brücher, A. H. Fink, G. C. Leckebusch, A. Krüger, and J. G. Pinto, 2003: The central European floods of August 2002: Part 2—Synoptic causes and considerations with respect to climatic change. Weather, 58, 434442, doi:10.1256/wea.61.03B.

    • Search Google Scholar
    • Export Citation
  • van den Besselaar, E. J. M., A. M. G. K. Tank, and T. A. Buishand, 2012: Trends in European precipitation extremes over 1951–2010. Int. J. Climatol., 33, 26822689, doi:10.1002/joc.3619.

    • Search Google Scholar
    • Export Citation
  • Walther, A., J.-H. Jeong, G. Nikulin, C. Jones, and D. Chen, 2013: Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos. Res., 119, 131139, doi:10.1016/j.atmosres.2011.10.012.

    • Search Google Scholar
    • Export Citation
  • Weusthoff, T., F. Ament, M. Arpagaus, and M. W. Rotach, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP d-PHASE. Mon. Wea. Rev., 138, 34183433, doi:10.1175/2010MWR3380.1.

    • Search Google Scholar
    • Export Citation
  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775, doi:10.1002/joc.2025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1501 992 12
PDF Downloads 418 108 4