Strong Ocean–Atmosphere Interactions during a Short-Term Hot Event over the Western Pacific Warm Pool in Response to El Niño

Guixing Chen Center for Monsoon and Environment Research, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China, and Department of Geophysics, Tohoku University, Sendai, Japan

Search for other papers by Guixing Chen in
Current site
Google Scholar
PubMed
Close
and
Huiling Qin State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China

Search for other papers by Huiling Qin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A short-term hot event with a very high sea surface temperature (SST ≥ 30°C) occurred in the western Pacific warm pool during November 2006. The interactions between this ocean hot event, atmospheric convection, and large-scale dynamics are studied using satellite observations, buoy measurements, air–sea fluxes analysis, and global reanalysis. It is shown that SST variation and deep convection over the western Pacific behave like a remote response to the El Niño warm SST anomaly in the central Pacific that induces westward-moving atmospheric convection and equatorial waves. The large-scale subsidence associated with propagating convection not only promotes high SSTs in the western Pacific through establishing cloud-free conditions and increasing heat content in a thin ocean mixed layer, but also produces convective instability through capping substantial water vapor in the lower troposphere. Under the precondition of convective instability and the steering of tropical easterlies, some convective systems propagate coherently from the central to western Pacific and intensify. In particular, new cloud clusters are dynamically attracted to the warmest oceans with maximum atmospheric instability. The enhanced convective activity then transfers oceanic energy into the atmosphere, strengthens upper-ocean mixing, and returns the positive SST anomalies to more typical values. In such a coupled system, synoptic-scale convective activities at an interval of 5–8 days are selectively amplified and thus are filtered to an intraseasonal (20–30-day) oscillation, depending on the phase of the hot event over the western Pacific. The observed evidence has implications for the predictability of short-term climate, and it offers critical information for validating the coupled ocean–atmosphere dynamics in climate models.

Corresponding author address: Dr. Huiling Qin, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 XinGangXi Road, Guangzhou 510301, China. E-mail: hlqin@scsio.ac.cn

Abstract

A short-term hot event with a very high sea surface temperature (SST ≥ 30°C) occurred in the western Pacific warm pool during November 2006. The interactions between this ocean hot event, atmospheric convection, and large-scale dynamics are studied using satellite observations, buoy measurements, air–sea fluxes analysis, and global reanalysis. It is shown that SST variation and deep convection over the western Pacific behave like a remote response to the El Niño warm SST anomaly in the central Pacific that induces westward-moving atmospheric convection and equatorial waves. The large-scale subsidence associated with propagating convection not only promotes high SSTs in the western Pacific through establishing cloud-free conditions and increasing heat content in a thin ocean mixed layer, but also produces convective instability through capping substantial water vapor in the lower troposphere. Under the precondition of convective instability and the steering of tropical easterlies, some convective systems propagate coherently from the central to western Pacific and intensify. In particular, new cloud clusters are dynamically attracted to the warmest oceans with maximum atmospheric instability. The enhanced convective activity then transfers oceanic energy into the atmosphere, strengthens upper-ocean mixing, and returns the positive SST anomalies to more typical values. In such a coupled system, synoptic-scale convective activities at an interval of 5–8 days are selectively amplified and thus are filtered to an intraseasonal (20–30-day) oscillation, depending on the phase of the hot event over the western Pacific. The observed evidence has implications for the predictability of short-term climate, and it offers critical information for validating the coupled ocean–atmosphere dynamics in climate models.

Corresponding author address: Dr. Huiling Qin, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 XinGangXi Road, Guangzhou 510301, China. E-mail: hlqin@scsio.ac.cn
Save
  • Anderson, S. P., R. A. Weller, and R. B. Lukas, 1996: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: Observations and 1D model results. J. Climate, 9, 30563085, doi:10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, doi:10.1175/JCLI3319.1.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877, doi:10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., T. Iwasaki, H. Qin, and W. Sha, 2014a: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 55175537, doi:10.1175/JCLI-D-14-00005.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., R. Yoshida, W. Sha, T. Iwasaki, and H. Qin, 2014b: Convective instability associated with the eastward-propagating rainfall episodes over eastern China during the warm season. J. Climate, 27, 23312339, doi:10.1175/JCLI-D-13-00443.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, doi:10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dieng, A. L., L. Eymard, S. M. Sall, A. Lazar, and M. Leduc-Leballeur, 2014: Analysis of strengthening and dissipating mesoscale convective systems propagating off the West African coast. Mon. Wea. Rev., 142, 46004623, doi:10.1175/MWR-D-13-00388.1.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 30563082, doi:10.1175/JCLI4144.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.

  • Fasullo, J., and P. J. Webster, 1999: Warm pool SST variability in relation to the surface energy balance. J. Climate, 12, 12921305, doi:10.1175/1520-0442(1999)012<1292:WPSVIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Yang, Q. Bao, and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577597, doi:10.1175/2007MWR2172.1.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, doi:10.1126/science.238.4827.657.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2004: African easterly waves and their association with precipitation. J. Geophys. Res., 109, D04101, doi:10.1029/2003JD003967.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J., and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440, doi:10.1175/JAS3851.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, doi:10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawamura, H., H. Qin, and K. Ando, 2008: In situ diurnal sea surface temperature variations and near-surface thermal structure in the tropical hot event of the Indo-Pacific warm pool. J. Oceanogr., 64, 847857, doi:10.1007/s10872-008-0070-9.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654, doi:10.1175/2007JCLI1659.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 13041322, doi:10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465472, doi:10.1175/1520-0442(1997)010<0465:MOSTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392, doi:10.1175/1520-0442(1997)010<0381:TROLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, T., T. F. Hogan, and C.-P. Chang, 2000: Dynamic and thermodynamic regulation of ocean warming. J. Atmos. Sci., 57, 33533365, doi:10.1175/1520-0469(2000)057<3353:DATROO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, R.-C. Lien, J. N. Moum, and J.-W. Wang, 2013: Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden–Julian Oscillations. J. Geophys. Res., 118, 49454964, doi:10.1002/jgrc.20395.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., J.-P. Duvel, and M. Desbois, 1993: Diurnal variations and modulation by easterly waves of the size distribution of convective cloud clusters over West Africa and the Atlantic Ocean. Mon. Wea. Rev., 121, 3749, doi:10.1175/1520-0493(1993)121<0037:DVAMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2007: Idealized hot spot experiments with a general circulation model. J. Climate, 20, 908925, doi:10.1175/JCLI4053.1.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and W. M. Frank, 1999: Relationships between stability and monsoon convection. J. Atmos. Sci., 56, 2436, doi:10.1175/1520-0469(1999)056<0024:RBSAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: The Global Tropical Moored Buoy Array. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, European Space Agency, WPP-306, doi:10.5270/OceanObs09.cwp.61.

  • Meenu, S., K. Parameswaran, and K. Rajeev, 2012: Role of sea surface temperature and wind convergence in regulating convection over the tropical Indian Ocean. J. Geophys. Res., 117, D14102, doi:10.1029/2011JD016947.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, doi:10.1002/qj.49710243208.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, doi:10.1109/TGRS.2002.808319.

    • Search Google Scholar
    • Export Citation
  • Payne, S. W., and M. M. McGarry, 1977: The relationship of satellite inferred convective activity to easterly waves over West Africa and the adjacent ocean during phase III of GATE. Mon. Wea. Rev., 105, 414420, doi:10.1175/1520-0493(1977)105<0413:TROSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Qin, H., and H. Kawamura, 2009a: Atmosphere response to a hot SST event in November 2006 as observed by AIRS instrument. Adv. Space Res., 44, 395400, doi:10.1016/j.asr.2009.03.003.

    • Search Google Scholar
    • Export Citation
  • Qin, H., and H. Kawamura, 2009b: Surface heat fluxes during hot events. J. Oceanogr., 65, 605613, doi:10.1007/s10872-009-0051-7.

  • Qin, H., and H. Kawamura, 2010: Air–sea interaction through the whole troposphere over a very high SST phenomenon. Geophys. Res. Lett., 37, L01704, doi:10.1029/2009GL041685.

    • Search Google Scholar
    • Export Citation
  • Qin, H., H. Kawamura, and Y. Kawai, 2007: Detection of hot event in the equatorial Indo-Pacific warm pool using advanced satellite sea surface temperature, solar radiation, and wind speed. J. Geophys. Res., 112, C07015, doi:10.1029/2006JC003969.

    • Search Google Scholar
    • Export Citation
  • Qin, H., H. Kawamura, F. Sakaida, and K. Ando, 2008: A case study of the tropical Hot Event in November 2006 (HE0611) using a geostationary meteorological satellite and the TAO/TRITON mooring array. J. Geophys. Res., 113, C08045, doi:10.1029/2007JC004640.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S.-P. Xie, and C.-Y. Tam, 2006: Satellite observations of intense intraseasonal cooling events in the tropical south Indian Ocean. Geophys. Res. Lett., 33, L14704, doi:10.1029/2006GL026525.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, R. P., and J. Zhu, 2014: Simulations of boreal summer intraseasonal oscillations with the climate forecast system, version 2, over India and the Western Pacific: Role of air–sea coupling. Atmos.–Ocean, 52, 321330, doi:10.1080/07055900.2014.939575.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992, doi:10.1175/1520-0442(2003)016<3978:ASTMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17, 22132224, doi:10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., G. K. Walker, and K. M. Lau, 1999: Mechanisms regulating sea-surface temperatures and deep convection in the tropics. Geophys. Res. Lett., 26, 10191022, doi:10.1029/1999GL900197.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec, 1997: Multiscale air–sea interactions during TOGA COARE. Mon. Wea. Rev., 125, 448462, doi:10.1175/1520-0493(1997)125<0448:MASIDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, H., H. Su, J. H. Jiang, Z. J. Luo, S.-P. Xie, and J. Hafner, 2013: Tropical water vapor variations during the 2006–2007 and 2009–2010 El Niños: Satellite observation and GFDL AM2.1 simulation. J. Geophys. Res. Atmos., 118, 89108920, doi:10.1002/jgrd.50684.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221246.

    • Search Google Scholar
    • Export Citation
  • Tian, B. J., D. E. Waliser, E. Fetzer, B. Lambrigtsen, Y. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the Madden–Julian oscillation in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: On the relationship between tropical convection and sea surface temperature. J. Climate, 14, 633637, doi:10.1175/1520-0442(2001)014<0633:OTRBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate, 9, 161187, doi:10.1175/1520-0442(1996)009<0161:FALMFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, doi:10.1029/93JD00872.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1994: The role of hydrological processes in ocean–atmosphere interaction. Rev. Geophys., 32, 427476, doi:10.1029/94RG01873.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA-COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, doi:10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 20862104, doi:10.1175/1520-0442(2000)013<2086:TRBCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2001: The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127, 887907, doi:10.1002/qj.49712757310.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part I: Horizontal and vertical structures. J. Atmos. Sci., 64, 34063423, doi:10.1175/JAS4017.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 34243437, doi:10.1175/JAS4018.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, doi:10.1175/JCLI-D-13-00190.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 549 238 8
PDF Downloads 230 79 4