Decadal Climate Predictions Using Sequential Learning Algorithms

Ehud Strobach Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel

Search for other papers by Ehud Strobach in
Current site
Google Scholar
PubMed
Close
and
Golan Bel Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel

Search for other papers by Golan Bel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensembles of climate models are commonly used to improve decadal climate predictions and assess the uncertainties associated with them. Weighting the models according to their performances holds the promise of further improving their predictions. Here, an ensemble of decadal climate predictions is used to demonstrate the ability of sequential learning algorithms (SLAs) to reduce the forecast errors and reduce the uncertainties. Three different SLAs are considered, and their performances are compared with those of an equally weighted ensemble, a linear regression, and the climatology. Predictions of four different variables—the surface temperature, the zonal and meridional wind, and pressure—are considered. The spatial distributions of the performances are presented, and the statistical significance of the improvements achieved by the SLAs is tested. The reliability of the SLAs is also tested, and the advantages and limitations of the different measures of the performance are discussed. It was found that the best performances of the SLAs are achieved when the learning period is comparable to the prediction period. The spatial distribution of the SLAs performance showed that they are skillful and better than the other forecasting methods over large continuous regions. This finding suggests that, despite the fact that each of the ensemble models is not skillful, they were able to capture some physical processes that resulted in deviations from the climatology and that the SLAs enabled the extraction of this additional information.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0648.s1.

Corresponding author address: Golan Bel, Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel. E-mail: bel@bgu.ac.il

Abstract

Ensembles of climate models are commonly used to improve decadal climate predictions and assess the uncertainties associated with them. Weighting the models according to their performances holds the promise of further improving their predictions. Here, an ensemble of decadal climate predictions is used to demonstrate the ability of sequential learning algorithms (SLAs) to reduce the forecast errors and reduce the uncertainties. Three different SLAs are considered, and their performances are compared with those of an equally weighted ensemble, a linear regression, and the climatology. Predictions of four different variables—the surface temperature, the zonal and meridional wind, and pressure—are considered. The spatial distributions of the performances are presented, and the statistical significance of the improvements achieved by the SLAs is tested. The reliability of the SLAs is also tested, and the advantages and limitations of the different measures of the performance are discussed. It was found that the best performances of the SLAs are achieved when the learning period is comparable to the prediction period. The spatial distribution of the SLAs performance showed that they are skillful and better than the other forecasting methods over large continuous regions. This finding suggests that, despite the fact that each of the ensemble models is not skillful, they were able to capture some physical processes that resulted in deviations from the climatology and that the SLAs enabled the extraction of this additional information.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0648.s1.

Corresponding author address: Golan Bel, Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel. E-mail: bel@bgu.ac.il

Supplementary Materials

    • Supplemental Materials (PDF 12.93 MB)
Save
  • Buser, C. M., H. R. Künsch, D. Lüthi, M. Wild, and C. Schär, 2009: Bayesian multi-model projection of climate: Bias assumptions and interannual variability. Climate Dyn., 33, 849868, doi:10.1007/s00382-009-0588-6.

    • Search Google Scholar
    • Export Citation
  • Buser, C. M., H. R. Künsch, and C. Schär, 2010: Bayesian multi-model projections of climate: Generalization and application to ENSEMBLES results. Climate Res., 44, 227241, doi:10.3354/cr00895.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 2010: Climate science: Decadal predictions in demand. Nat. Geosci., 3, 231232, doi:10.1038/ngeo823.

  • Cesa-Bianchi, N., and G. Lugosi, 2006: Prediction, Learning, and Games. Cambridge University Press, 408 pp.

  • Chakraborty, A., and T. N. Krishnamurti, 2009: Improving global model precipitation forecasts over India using downscaling and the FSU superensemble. Part II: Seasonal climate. Mon. Wea. Rev., 137, 27362757, doi:10.1175/2009MWR2736.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2007: Ensembles and probabilities: A new era in the prediction of climate change. Philos. Trans. Roy. Soc. London, A365, 19571970, doi:10.1098/rsta.2007.2068.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Cox, P., and D. Stephenson, 2007: A changing climate for prediction. Science, 317, 207208, doi:10.1126/science.1145956.

  • Doblas-Reyes, F. J., M. Déqué, and J.-P. Piedelievre, 2000: Multi-model spread and probabilistic seasonal forecasts in PROVOST. Quart. J. Roy. Meteor. Soc., 126, 20692087, doi:10.1256/smsqj.56704.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., V. Pavan, and D. B. Stephenson, 2003: The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Climate Dyn., 21, 501514, doi:10.1007/s00382-003-0350-4.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus, 57A, 234252, doi:10.1111/j.1600-0870.2005.00104.x.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, doi:10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Feng, J., D.-K. Lee, C. Fu, J. Tang, Y. Sato, H. Kato, J. L. Mcgregor, and K. Mabuchi, 2011: Comparison of four ensemble methods combining regional climate simulations over Asia. Meteor. Atmos. Phys., 111, 4153, doi:10.1007/s00703-010-0115-7.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., and N. R. Smith, 1989: Combining predictive schemes in long-range forecasting. J. Climate, 2, 291294, doi:10.1175/1520-0442(1989)002<0291:CPSILR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., S. R. Sain, D. Nychka, and G. A. Meehl, 2007: Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat., 14, 249266, doi:10.1007/s10651-007-0018-z.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19, 43264343, doi:10.1175/JCLI3864.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Herbster, M., and M. K. Warmuth, 1998: Tracking the best expert. Mach. Learn., 32, 151178, doi:10.1023/A:1007424614876.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, doi:10.1038/nature06921.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644.

  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028, doi:10.1017/CBO9781107415324.023.

  • Krishnamurti, T. N., 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, doi:10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kruschke, T., H. Rust, C. Kadow, G. Leckebusch, and U. Ulbrich, 2014: Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus, 66A, 22830, doi:10.3402/tellusa.v66.22830.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 3515–3539, doi:10.1016/j.jcp.2007.02.014.

  • Mallet, V., 2010: Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation. J. Geophys. Res., 115, D24303, doi:10.1029/2010JD014259.

  • Mallet, V., G. Stoltz, and B. Mauricette, 2009: Ozone ensemble forecast with machine learning algorithms. J. Geophys. Res., 114, D050307, doi:10.1029/2008JD009978.

  • McQuade, S., and C. Monteleoni, 2012: Global climate model tracking using geospatial neighborhoods. Proc. 26th AAAI Conf. on Artificial Intelligence, Toronto, Canada, Association for the Advancement of Artificial Intelligence, 335341.

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction. Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, doi:10.1175/BAMS-D-12-00241.1.

    • Search Google Scholar
    • Export Citation
  • Monteleoni, C., and T. Jaakkola, 2003: Online learning of non-stationary sequences. Adv. Neural Inf. Process. Syst., 16, 10931100.

  • Monteleoni, C., G. A. Schmidt, and S. Saroha, 2010: Tracking climate models. Proc. NASA Conf. on Intelligent Data Understanding, Mountain View, CA, NASA, 115.

  • Monteleoni, C., G. A. Schmidt, S. Saroha, and E. Asplund, 2011: Tracking climate models. Stat. Anal. Data Min., 4, 372392, doi:10.1002/sam.10126.

    • Search Google Scholar
    • Export Citation
  • Moss, R., and Coauthors, 2008: Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Rep., 25 pp. [Available online at https://www.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios.pdf.]

  • Müller, W. A., and Coauthors, 2012: Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res. Lett., 39, L22707, doi:10.1029/2012GL053326.

  • Müller, W. A., H. Pohlmann, F. Sienz, and D. Smith, 2014: Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys. Res. Lett., 41, 21002107, doi:10.1002/2014GL059259.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Palmer, T. N., Č. Branković, and D. S. Richardson, 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126, 2013–2033, doi:10.1002/qj.49712656703.

  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., and F. J. Doblas-Reyes, 2000: Multi-model seasonal hindcasts over the Euro-Atlantic: Skill scores and dynamic features. Climate Dyn., 16, 611625, doi:10.1007/s003820000063.

    • Search Google Scholar
    • Export Citation
  • Peña, M., and H. van den Dool, 2008: Consolidation of multimodel forecasts by ridge regression: Application to Pacific sea surface temperature. J. Climate, 21, 65216538, doi:10.1175/2008JCLI2226.1.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, H. van den Dool, and A. G. Barnston, 2002: An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107, 4710, doi:10.1029/2002JD002712.

  • Pohlmann, H., J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., L. Ruokolainen, and J. Ylhäisi, 2010: Weighting of model results for improving best estimates of climate change. Climate Dyn., 35, 407422, doi:10.1007/s00382-009-0659-8.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through regularization and optimal combination of multiple GCM ensembles. Mon. Wea. Rev., 130, 1792–1811, doi:10.1175/1520-0493(2002)130<1792:CCFTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132, 27322744, doi:10.1175/MWR2818.1.

    • Search Google Scholar
    • Export Citation
  • Ross, S. M., 2014: Regression. Introduction to Probability and Statistics for Engineers and Scientists, 5th ed. S. M. Ross, Ed., Academic Press, 357–444, doi:10.1016/B978-0-12-394811-3.50009-5.

  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., C. Tebaldi, D. Nychka, and L. O. Mearns, 2009: Bayesian modeling of uncertainty in ensembles of climate models. J. Amer. Stat. Assoc., 104, 97116, doi:10.1198/jasa.2009.0007.

    • Search Google Scholar
    • Export Citation
  • Strobach, E., and G. Bel, 2015a: Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmos. Chem. Phys., 15, 86318641, doi:10.5194/acp-15-8631-2015.

    • Search Google Scholar
    • Export Citation
  • Strobach, E., and G. Bel, 2015b: The contribution of internal and model variabilities to the uncertainty in CMIP5 decadal climate predictions. 35 pp. [Available online at http://arxiv.org/pdf/1508.01609v1.pdf.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design, 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc., A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 550 pp.

  • Yun, W. T., L. Stefanova, and T. N. Krishnamurti, 2003: Improvement of the multimodel superensemble technique for seasonal forecasts. J. Climate, 16, 38343840, doi:10.1175/1520-0442(2003)016<3834:IOTMST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yun, W. T., L. Stefanova, A. K. Mitra, T. S. V. V. Kumar, W. Dewar, and T. N. Krishnamurti, 2005: A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus, 57A, 280289, doi:10.1111/j.1600-0870.2005.00131.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 448 94 0
PDF Downloads 294 45 1