Orthogonal PDO and ENSO Indices

Xianyao Chen Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China

Search for other papers by Xianyao Chen in
Current site
Google Scholar
PubMed
Close
and
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A framework for interpreting the Pacific decadal oscillation (PDO) and ENSO indices is presented. The two leading principal components (PCs) of sea surface temperature [SST; strictly speaking, the departure from globally averaged SST (SST*)] over the entire Pacific basin comprise a two-dimensional phase space. A linear combination of these pan-Pacific PCs corresponding to a +45° rotation (designated by P) is nearly identical to the PDO, the leading PC of Pacific SST* poleward of 20°N. Both P and the PDO index exhibit apparent “regime shifts” on the interdecadal time scale. The orthogonal axis (rotated by −45° and designated by T′) is highly correlated with conventional ENSO indices, but its spatial regression pattern is more equatorially focused. SST variability along these two rotated axes exhibits sharply contrasting power spectra, the former (i.e., P) suggestive of “red noise” on time scales longer than a decade and the latter (i.e., T′) exhibiting a prominent spectral peak around 3–5 years. Hence, orthogonal indices representative of the ENSO cycle and ENSO-like decadal variability can be generated without resorting to filtering in the time domain. The methodology used here is the same as that used by Takahashi et al. to quantify the diversity of equatorial SST patterns in ENSO; they rotated the two leading EOFs of tropical Pacific SST, whereas the two leading EOFs of pan-Pacific SST* are rotated here.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0684.s1.

Corresponding author address: Xianyao Chen, Key Laboratory of Physical Oceanography, Ocean University of China, 238 Songling Rd., Qingdao 266100, China. E-mail: chenxy@ouc.edu.cn

Abstract

A framework for interpreting the Pacific decadal oscillation (PDO) and ENSO indices is presented. The two leading principal components (PCs) of sea surface temperature [SST; strictly speaking, the departure from globally averaged SST (SST*)] over the entire Pacific basin comprise a two-dimensional phase space. A linear combination of these pan-Pacific PCs corresponding to a +45° rotation (designated by P) is nearly identical to the PDO, the leading PC of Pacific SST* poleward of 20°N. Both P and the PDO index exhibit apparent “regime shifts” on the interdecadal time scale. The orthogonal axis (rotated by −45° and designated by T′) is highly correlated with conventional ENSO indices, but its spatial regression pattern is more equatorially focused. SST variability along these two rotated axes exhibits sharply contrasting power spectra, the former (i.e., P) suggestive of “red noise” on time scales longer than a decade and the latter (i.e., T′) exhibiting a prominent spectral peak around 3–5 years. Hence, orthogonal indices representative of the ENSO cycle and ENSO-like decadal variability can be generated without resorting to filtering in the time domain. The methodology used here is the same as that used by Takahashi et al. to quantify the diversity of equatorial SST patterns in ENSO; they rotated the two leading EOFs of tropical Pacific SST, whereas the two leading EOFs of pan-Pacific SST* are rotated here.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0684.s1.

Corresponding author address: Xianyao Chen, Key Laboratory of Physical Oceanography, Ocean University of China, 238 Songling Rd., Qingdao 266100, China. E-mail: chenxy@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (RAR 4.25 MB)
Save
  • Alexander, M. A., 2010: Extratropical air–sea interaction, sea surface temperature variability, and the Pacific decadal oscillation. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 123–148.

  • Alexander, M. A., I. Bladé, M. Newman, J. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and H. M. Van den Dool, 1993: Toward understanding the causes of low-frequency variability: The interannual standard deviation of monthly mean 700-mb height. J. Climate, 6, 20832102, doi:10.1175/1520-0442(1993)006<2083:TUTCOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., J. Luterbacher, J. Staehelin, T. M. Svendby, G. Hansen, and T. Svenoe, 2004: Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature, 431, 971974, doi:10.1038/nature02982.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, doi:10.1029/2004GL022015.

    • Search Google Scholar
    • Export Citation
  • Chen, X. Y., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, doi:10.1175/JCLI-D-15-0322.1.

  • Clement, A., P. Dinezio, and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, doi:10.1175/2011JCLI3973.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, doi:10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8, 16771680, doi:10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2010: The slab ocean El Niño. Geophys. Res. Lett., 37, L20701, doi:10.1029/2010GL044888.

  • Dommenget, D., and M. Latif, 2008: Generation of hyper climate modes. Geophys. Res. Lett., 35, L02706, doi:10.1029/2007GL031087.

  • Dommenget, D., S. Haase, T. Bayr, and C. Frauen, 2014: Analysis of the slab ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Climate Dyn., 42, 31873205, doi:10.1007/s00382-014-2057-0.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29A, 289305, doi:10.1111/j.2153-3490.1977.tb00740.x.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, doi:10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561, doi:10.1175/JCLI3538.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, H. G., and J. A. Dracup, 2003: ENSO and PDO effects on hydroclimatic variations of the upper Colorado River basin. J. Hydrometeor., 4, 523, doi:10.1175/1525-7541(2003)004<0005:EAPEOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., T. Motoi, and H. Koide, 1999: SST variability and its mechanism in a coupled atmosphere–mixed layer ocean model. J. Climate, 12, 12211239, doi:10.1175/1520-0442(1999)012<1221:SVAIMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, E. L., A. K. Snover, A. F. Hamlet, B. Callahan, and D. Fluharty, 2000: Pacific Northwest regional assessment: The impacts of climate variability and climate change on the water resources of the Columbia River basin. J. Amer. Water Res. Assoc., 36, 399420, doi:10.1111/j.1752-1688.2000.tb04277.x.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Tanaka, and J. M. Wallace, 1987: Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns. J. Atmos. Sci., 44, 33773391, doi:10.1175/1520-0469(1987)044<3377:HSAEON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, doi:10.1175/JCLI-D-15-0508.1, in press.

  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375383.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, doi:10.1175/JCLI-D-13-00448.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Papineau, J. M., 2001: Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol., 21, 15771592, doi:10.1002/joc.686.

    • Search Google Scholar
    • Export Citation
  • Pavia, E. G., F. Graef, and J. Reyes, 2006: PDO–ENSO effects in the climate of Mexico. J. Climate, 19, 64336438, doi:10.1175/JCLI4045.1.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17, 37283744, doi:10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in the tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roy, S. S., 2006: The impacts of ENSO, PDO, and local SSTs on winter precipitation in India. Phys. Geogr., 27, 464474, doi:10.2747/0272-3646.27.5.464.

    • Search Google Scholar
    • Export Citation
  • Schoennagel, T., T. T. Veblen, W. H. Romme, J. S. Sibold, and E. R. Cook, 2005: ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol. Appl., 15, 20002014, doi:10.1890/04-1579.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060, doi:10.1029/97GL03092.

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, doi:10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2002: Pacific interannual and interdecadal equatorial variability in a 1000-yr simulation of the CSIRO coupled general circulation model. J. Climate, 15, 160178, doi:10.1175/1520-0442(2002)015<0160:PIAIEV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter season. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. Shabbar, and F. W. Zwiers, 2007: The enhanced PNA-like climate response to Pacific interannual and decadal variability. J. Climate, 20, 52855300, doi:10.1175/2007JCLI1480.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like decade-to-century scale variability. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 963 199 13
PDF Downloads 946 182 13