Intensified Interannual Relationship between Tropical Cyclone Genesis Frequency over the Northwest Pacific and the SST Gradient between the Southwest Pacific and the Western Pacific Warm Pool since the Mid-1970s

Jiuwei Zhao Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jiuwei Zhao in
Current site
Google Scholar
PubMed
Close
,
Ruifen Zhan Shanghai Typhoon Institute of China Meteorological Administration, Shanghai, China

Search for other papers by Ruifen Zhan in
Current site
Google Scholar
PubMed
Close
,
Yuqing Wang International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
, and
Li Tao Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Li Tao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sea surface temperature gradient (SSTG) between the southwest Pacific (SWP; 40°–20°S, 160°E–170°W) and the western Pacific warm pool (WWP; 0°–16°N, 125°–165°E) in boreal spring was revealed to contribute significantly to the interannual variability of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1980. The present study extends the analysis back to 1951. Results show that the interannual relationship between the SSTG and WNP TC genesis frequency is statistically significant only after the mid-1970s while insignificant prior to 1974. Further analyses show that the SSTG is strongly negatively correlated with the SST anomaly (SSTA) in the central Pacific (CP) in the recent period while with the SSTA in the equatorial eastern Pacific (EP) in the prior period. In the prior period, the spring positive (negative) EP SSTA induces an anticyclonic (cyclonic) circulation over the WNP. This partly offsets the impact of the SSTG anomaly on the atmospheric circulation over the WNP. In addition, the SSTG anomaly in spring shows poor persistence through summer. As a result, the relationship between the spring SSTG anomaly and WNP TC genesis frequency is largely weakened in the prior period. In the recent period, the response of the atmospheric circulation over the WNP to the CP SSTAs enhances the atmospheric circulation response to the spring SSTG anomaly, thus strengthening the relationship between the SSTG and WNP TC genesis frequency. These results are further confirmed by the atmospheric general circulation model (AGCM) simulations.

Corresponding author address: Dr. Ruifen Zhan, Shanghai Typhoon Institute, China Meteorological Administration, 166 Puxi Road, Xuhui District, Shanghai 200030, China. E-mail: zhanrf@mail.typhoon.gov.cn

Abstract

The sea surface temperature gradient (SSTG) between the southwest Pacific (SWP; 40°–20°S, 160°E–170°W) and the western Pacific warm pool (WWP; 0°–16°N, 125°–165°E) in boreal spring was revealed to contribute significantly to the interannual variability of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1980. The present study extends the analysis back to 1951. Results show that the interannual relationship between the SSTG and WNP TC genesis frequency is statistically significant only after the mid-1970s while insignificant prior to 1974. Further analyses show that the SSTG is strongly negatively correlated with the SST anomaly (SSTA) in the central Pacific (CP) in the recent period while with the SSTA in the equatorial eastern Pacific (EP) in the prior period. In the prior period, the spring positive (negative) EP SSTA induces an anticyclonic (cyclonic) circulation over the WNP. This partly offsets the impact of the SSTG anomaly on the atmospheric circulation over the WNP. In addition, the SSTG anomaly in spring shows poor persistence through summer. As a result, the relationship between the spring SSTG anomaly and WNP TC genesis frequency is largely weakened in the prior period. In the recent period, the response of the atmospheric circulation over the WNP to the CP SSTAs enhances the atmospheric circulation response to the spring SSTG anomaly, thus strengthening the relationship between the SSTG and WNP TC genesis frequency. These results are further confirmed by the atmospheric general circulation model (AGCM) simulations.

Corresponding author address: Dr. Ruifen Zhan, Shanghai Typhoon Institute, China Meteorological Administration, 166 Puxi Road, Xuhui District, Shanghai 200030, China. E-mail: zhanrf@mail.typhoon.gov.cn
Save
  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661675, doi:10.1002/joc.3370060607.

  • Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481484, doi:10.1038/461481a.

  • Ashok, K., Z. Guan, and T. A. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, doi:10.2151/jmsj.81.41.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. Chelliah, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 58105825, doi:10.1175/2010JCLI3575.1.

    • Search Google Scholar
    • Export Citation
  • Cao, X., S. F. Chen, G. H. Chen, W. Chen, and R. G. Wu, 2015: On the weakened relationship between spring Arctic Oscillation and following summer tropical cyclone frequency over the western North Pacific: A comparison between 1968–1986 and 1989–2007. Adv. Atmos. Sci., 32, 13191328, doi:10.1007/s00376-015-4256-y.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, doi:10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Philos. Trans. Roy. Soc. London, 464A, 249272, doi:10.1098/rspa.2007.0183.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., 2011: How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J. Climate, 24, 46954700, doi:10.1175/2011JCLI4140.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G. H., and C. Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi:10.1029/2009GL041708.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, and M. C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 57095720, doi:10.1175/JCLI3934.1.

    • Search Google Scholar
    • Export Citation
  • Choi, Y., K. J. Ha, C. H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 32433255, doi:10.1007/s00382-015-2536-y.

    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, doi:10.1175/2010JCLI3890.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240241.

  • Goh, A. Z. C., and J. C. L. Chan, 2010: Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol., 30, 827843, doi:10.1002/joc.1943.

    • Search Google Scholar
    • Export Citation
  • He, H., J. Yang, D. Gong, R. Mao, Y. Wang, and M. Gao, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate Dyn., 45, 33173329, doi:10.1007/s00382-015-2541-1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern‐Pacific and central‐Pacific types of El Niño. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Leung, Y.-K., M.-C. Wu, and W.-L. Chang, 2005: Variations of tropical cyclone activity in the South China Sea. Hong Kong Observatory Reprint 675, 12 pp.

  • Lin, C.-C., Y.-J. Liou, and S.-J. Huang, 2015: Impacts of two-type ENSO on rainfall over Taiwan. Adv. Meteor., 2015, 658347, doi:10.1155/2015/658347.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmerman, M. F. Stuecker, M. H. England, M. Merrifield, and F.-F. Jin, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Research Department Tech. Memo., 41 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E. K., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute Rep. 218, 90 pp.

  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. ECMWF ERA-40 Project Rep. Series 1, 63 pp.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/National Meteorological Center/Climate Analyses Center, 5257.

  • Wu, G., and N. C. Lau, 1992: A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev., 120, 958977, doi:10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287301, doi:10.1175/JTECH-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, doi:10.1175/JCLI-D-11-00576.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and X. Lei, 2011a: Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency. J. Climate, 24, 509521, doi:10.1175/2010JCLI3808.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C.-C. Wu, 2011b: Impact of SSTA in the East Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model study. J. Climate, 24, 62276242, doi:10.1175/JCLI-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and W. Min, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. J. Climate, 26, 24082415, doi:10.1175/JCLI-D-12-00798.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and L. Tao, 2014: Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J. Climate, 27, 87248739, doi:10.1175/JCLI-D-14-00119.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and J. Z. Min, 2013: North Pacific gyre oscillation and the occurrence of western North Pacific tropical cyclones. Geophys. Res. Lett., 40, 52055211, doi:10.1002/grl.50955.

    • Search Google Scholar
    • Export Citation
  • Zhao, H.-K., and C.-Z. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., doi:10.1007/s00382-015-2837-1, in press.

    • Search Google Scholar
    • Export Citation
  • Zhou, B.-T., and X.-P. Cui, 2010: Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chin. Sci. Bull., 55, 196201, doi:10.1007/s11434-010-4157-5.

    • Search Google Scholar
    • Export Citation
  • Zhou, B.-T., and X.-P. Cui, 2014: Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific. Sci. China, 57D, 21482155, doi:10.1007/s11430-014-4862-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 84 7
PDF Downloads 265 81 6