Cloud–Radiation Feedback as a Leading Source of Uncertainty in the Tropical Pacific SST Warming Pattern in CMIP5 Models

Jun Ying Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jun Ying in
Current site
Google Scholar
PubMed
Close
and
Ping Huang Center for Monsoon System Research and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Ping Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of the intermodel spread of cloud–radiation feedback in the uncertainty in the tropical Pacific SST warming (TPSW) pattern under global warming is investigated based on the historical and RCP8.5 runs from 32 models participating in CMIP5. The large intermodel discrepancies in cloud–radiation feedback contribute 24% of the intermodel uncertainty in the TPSW pattern over the central Pacific. The mechanism by which the cloud–radiation feedback influences the TPSW pattern is revealed based on an analysis of the surface heat budget. A relatively weak negative cloud–radiation feedback over the central Pacific cannot suppress the surface warming as greatly as in the multimodel ensemble and thus induces a warm SST deviation over the central Pacific, producing a low-level convergence that suppresses (enhances) the evaporative cooling and zonal cold advection in the western (eastern) Pacific. With these processes, the original positive SST deviation over the central Pacific will move westward to the western and central Pacific, with a negative SST deviation in the eastern Pacific. Compared with the observed cloud–radiation feedback from six sets of reanalysis and satellite-observed data, the negative cloud–radiation feedback in the models is underestimated in general. It implies that the TPSW pattern should be closer to an El Niño–like pattern based on the concept of observational constraint. However, the observed cloud–radiation feedback from the various datasets also demonstrates large discrepancies in magnitude. Therefore, the authors suggest that more effort should be made to improve the precision of shortwave radiation observations and the description of cloud–radiation feedback in models for a more reliable projection of the TPSW pattern in future.

Corresponding author address: Dr. Ping Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao 6#, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn

Abstract

The role of the intermodel spread of cloud–radiation feedback in the uncertainty in the tropical Pacific SST warming (TPSW) pattern under global warming is investigated based on the historical and RCP8.5 runs from 32 models participating in CMIP5. The large intermodel discrepancies in cloud–radiation feedback contribute 24% of the intermodel uncertainty in the TPSW pattern over the central Pacific. The mechanism by which the cloud–radiation feedback influences the TPSW pattern is revealed based on an analysis of the surface heat budget. A relatively weak negative cloud–radiation feedback over the central Pacific cannot suppress the surface warming as greatly as in the multimodel ensemble and thus induces a warm SST deviation over the central Pacific, producing a low-level convergence that suppresses (enhances) the evaporative cooling and zonal cold advection in the western (eastern) Pacific. With these processes, the original positive SST deviation over the central Pacific will move westward to the western and central Pacific, with a negative SST deviation in the eastern Pacific. Compared with the observed cloud–radiation feedback from six sets of reanalysis and satellite-observed data, the negative cloud–radiation feedback in the models is underestimated in general. It implies that the TPSW pattern should be closer to an El Niño–like pattern based on the concept of observational constraint. However, the observed cloud–radiation feedback from the various datasets also demonstrates large discrepancies in magnitude. Therefore, the authors suggest that more effort should be made to improve the precision of shortwave radiation observations and the description of cloud–radiation feedback in models for a more reliable projection of the TPSW pattern in future.

Corresponding author address: Dr. Ping Huang, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bei-Er-Tiao 6#, Zhong-Guan-Cun, Beijing 100190, China. E-mail: huangping@mail.iap.ac.cn
Save
  • An, S.-I., and S.-H. Im, 2014: Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming. Theor. Appl. Climatol., 118, 173183, doi:10.1007/s00704-013-1048-0.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270286, doi:10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., A. C. Clement, J. R. Norris, and B. J. Soden, 2014: Observational and model estimates of cloud amount feedback over the Indian and Pacific Oceans. J. Climate, 27, 925940, doi:10.1175/JCLI-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, doi:10.1175/2008BAMS2639.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2012: Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Climate Dyn., 39, 28052821, doi:10.1007/s00382-012-1330-3.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and D. B. Stephenson, 2013: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming. J. Climate, 26, 669678, doi:10.1175/JCLI-D-12-00537.1.

    • Search Google Scholar
    • Export Citation
  • Calisto, M., D. Folini, M. Wild, and L. Bengtsson, 2014: Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. Ann. Geophys., 32, 793807, doi:10.5194/angeo-32-793-2014.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513516, doi:10.1126/science.245.4917.513.

    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition analysis and canonical correlation analysis. J. Climate, 9, 20032009, doi:10.1175/1520-0442(1996)009<2003:SVDAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., R. E. Chandler, P. M. Cox, J. M. Huthnance, J. Rougier, and D. B. Stephenson, 2012: Quantifying future climate change. Nat. Climate Change, 2, 403409, doi:10.1038/nclimate1414.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, doi:10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2015: Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models. J. Climate, 28, 65036515, doi:10.1175/JCLI-D-15-0055.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and J. Ying, 2015: A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J. Climate, 28, 47064723, doi:10.1175/JCLI-D-14-00833.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, doi:10.1038/ngeo1792.

    • Search Google Scholar
    • Export Citation
  • Huang, P., P. Wang, K. Hu, G. Huang, Z. Zhang, Y. Liu, and B. Yan, 2014: An introduction to the integrated climate model of the Center for Monsoon System Research and its simulated influence of El Niño on East Asian-western North Pacific climate. Adv. Atmos. Sci., 31, 11361146, doi:10.1007/s00376-014-3233-1.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, doi:10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi:10.1029/2012GL053777.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, doi:10.1175/JCLI-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Long, S. M., and S. P. Xie, 2015: Intermodel variations in projected precipitation change over the North Atlantic: Sea surface temperature effect. Geophys. Res. Lett., 42, 41584165, doi:10.1002/2015GL063852.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and B. Zhao, 2012: The role of oceanic feedback in the climate response to doubling CO2. J. Climate, 25, 75447563, doi:10.1175/JCLI-D-11-00712.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and W. Liu, 2015: Understanding the El Niño-like oceanic response in the tropical Pacific to global warming. Climate Dyn., 45, 19451964, doi:10.1007/s00382-014-2448-2.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and S.-P. Xie, 2013: Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Climate, 26, 24822501, doi:10.1175/JCLI-D-12-00283.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and J.-Y. Yu, 2014: Linking centennial surface warming patterns in the equatorial Pacific to the relative strengths of the Walker and Hadley circulations. J. Atmos. Sci., 71, 34543464, doi:10.1175/JAS-D-14-0028.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994, doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du pole de modélisation de l’Institut Pierre-Simon Laplace Rep. 27, 193 pp.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791, doi:10.1175/JCLI3824.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., and P. D. Sardeshmukh, 2011: Critical influence of the pattern of tropical ocean warming on remote climate trends. Climate Dyn., 36, 15771591, doi:10.1007/s00382-009-0732-3.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., S. Emori, N. Hanasaki, M. Abe, Y. Masutomi, K. Takahashi, and T. Nozawa, 2011: Observational constraints indicate risk of drying in the Amazon basin. Nat. Commun., 2, 253, doi:10.1038/ncomms1252.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Song, X., and G. J. Zhang, 2014: Role of climate feedback in El Niño–like SST response to global warming. J. Climate, 27, 73017318, doi:10.1175/JCLI-D-14-00072.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Sun, D.-Z., J. Fasullo, T. Zhang, and A. Roubicek, 2003: On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J. Climate, 16, 24252432, doi:10.1175/2786.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and Coauthors, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 40594074, doi:10.1175/JCLI3835.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Valcke, S., 2006: OASIS3 user guide. PRISM Tech. Rep. 3, 64 pp.

  • Vecchi, G. A., and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., I. Macadam, J. Bathols, and J. O’Grady, 2007: Assessment of the use of current climate patterns to evaluate regional enhanced greenhouse response patterns of climate models. Geophys. Res. Lett., 34, L14701, doi:10.1029/2007GL030025.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, and R. Huang, 2016: Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv. Atmos. Sci., 33, 433441, doi:10.1007/s00376-015-5184-6.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 84138421, doi:10.1175/JCLI-D-14-00346.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, doi:10.1175/2011JCLI4172.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J.-L. Lin, and T. Shinoda, 2012: The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J. Geophys. Res., 117, C05024, doi:10.1029/2011JC007746.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., and S.-P. Xie, 2015: Effects of climatological model biases on the projection of tropical climate change. J. Climate, 28, 99099917, doi:10.1175/JCLI-D-15-0243.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 847 300 107
PDF Downloads 597 204 36