On the Observed Relationships between Variability in Gulf Stream Sea Surface Temperatures and the Atmospheric Circulation over the North Atlantic

Samantha M. Wills Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Samantha M. Wills in
Current site
Google Scholar
PubMed
Close
,
David W. J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
, and
Laura M. Ciasto Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Laura M. Ciasto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The advent of increasingly high-resolution satellite observations and numerical models has led to a series of advances in understanding the role of midlatitude sea surface temperature (SST) in climate variability, especially near western boundary currents (WBC). Observational analyses suggest that ocean dynamics play a central role in driving interannual SST variability over the Kuroshio–Oyashio and Gulf Stream extensions. Numerical experiments suggest that variations in the SST field within these WBC regions may have a much more pronounced influence on the atmospheric circulation than previously thought.

In this study, the authors examine the observational support for (or against) a robust atmospheric response to midlatitude SST variability in the Gulf Stream extension. To do so, they apply lead–lag analysis based on daily mean data to assess the evidence for two-way coupling between SST anomalies and the atmospheric circulation on transient time scales, building off of previous studies that have utilized weekly data. A novel decomposition approach is employed to demonstrate that atmospheric circulation anomalies over the Gulf Stream extension can be separated into two distinct patterns of midlatitude atmosphere–ocean interaction: 1) a pattern that peaks 2–3 weeks before the largest SST anomalies in the Gulf Stream extension, which can be viewed as the “atmospheric forcing,” and 2) a pattern that peaks several weeks after the largest SST anomalies, which the authors argue can be viewed as the “atmospheric response.” The latter pattern is linearly independent of the former and is interpreted as the potential response of the atmospheric circulation to SST variability in the Gulf Stream extension.

Corresponding author address: Samantha M. Wills, Department of Atmospheric Science, Colorado State University, 3915 W. Laport Ave., Fort Collins, CO 80521. E-mail: smwills@atmos.colostate.edu

Abstract

The advent of increasingly high-resolution satellite observations and numerical models has led to a series of advances in understanding the role of midlatitude sea surface temperature (SST) in climate variability, especially near western boundary currents (WBC). Observational analyses suggest that ocean dynamics play a central role in driving interannual SST variability over the Kuroshio–Oyashio and Gulf Stream extensions. Numerical experiments suggest that variations in the SST field within these WBC regions may have a much more pronounced influence on the atmospheric circulation than previously thought.

In this study, the authors examine the observational support for (or against) a robust atmospheric response to midlatitude SST variability in the Gulf Stream extension. To do so, they apply lead–lag analysis based on daily mean data to assess the evidence for two-way coupling between SST anomalies and the atmospheric circulation on transient time scales, building off of previous studies that have utilized weekly data. A novel decomposition approach is employed to demonstrate that atmospheric circulation anomalies over the Gulf Stream extension can be separated into two distinct patterns of midlatitude atmosphere–ocean interaction: 1) a pattern that peaks 2–3 weeks before the largest SST anomalies in the Gulf Stream extension, which can be viewed as the “atmospheric forcing,” and 2) a pattern that peaks several weeks after the largest SST anomalies, which the authors argue can be viewed as the “atmospheric response.” The latter pattern is linearly independent of the former and is interpreted as the potential response of the atmospheric circulation to SST variability in the Gulf Stream extension.

Corresponding author address: Samantha M. Wills, Department of Atmospheric Science, Colorado State University, 3915 W. Laport Ave., Fort Collins, CO 80521. E-mail: smwills@atmos.colostate.edu
Save
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2004: North Atlantic atmosphere–ocean interaction on intraseasonal time scales. J. Climate, 17, 16171621, doi:10.1175/1520-0442(2004)017<1617:NAAIOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cui, Y., A. Duan, Y. Liu, and G. Wu, 2015: Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA. Climate Dyn., 45, 16171634, doi:10.1007/s00382-014-2417-9.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean-atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101, doi:10.1002/qj.814.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, doi:10.1029/RG023i004p00357.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr., 13, 11311145, doi:10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennechael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, doi:10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Hand, R., N. Keenlyside, N.-E. Omrani, and M. Latif, 2014: Simulated response to inter-annual SST variations in the Gulf Stream region. Climate Dyn., 42, 715731, doi:10.1007/s00382-013-1715-y.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1985: Midlatitude sea surface temperature anomalies: A numerical hindcast. J. Phys. Oceanogr., 15, 787799, doi:10.1175/1520-0485(1985)015<0787:MSSTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemsiphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 98399859, doi:10.1175/JCLI-D-12-00647.1.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206210, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, doi:10.1175/2010JCLI3359.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 22152225, doi:10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880904, doi:10.1175/2008JCLI2297.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 14041413, doi:10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, doi:10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 5266, doi:10.1002/qj.2334.

    • Search Google Scholar
    • Export Citation
  • Piazza, M., L. Terray, J. Boé, E. Maisonnave, and E. Sanchez-Gomez, 2016: Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: A study using the atmospheric ARPEGE model. Climate Dyn., 46, 16991717, doi:10.1007/s00382-015-2669-z.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, doi:10.1175/2009JCLI3163.1.

    • Search Google Scholar
    • Export Citation
  • Sheldon, L., and A. Czaja, 2013: Seasonal and interannual variability of an index of deep atmospheric convection over western boundary currents. Quart. J. Roy. Meteor. Soc., 140, 2230, doi:10.1002/qj.2103.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, doi:10.1007/s00382-013-1980-9.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, and M. A. Alexander, 2014: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean. J. Climate, 27, 592606, doi:10.1175/JCLI-D-13-00123.1.

    • Search Google Scholar
    • Export Citation
  • Smirnov, D., M. Newman, M. A. Alexander, Y.-O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 11261147, doi:10.1175/JCLI-D-14-00285.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1444 683 206
PDF Downloads 762 142 27