A Climatology of Multiple Tropical Cyclone Events

Benjamin A. Schenkel Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Benjamin A. Schenkel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study provides a climatology of multiple tropical cyclone (TC) events (MTCEs) and the potential environmental factors responsible for triggering MTCEs in the North Atlantic (NATL), eastern North Pacific (EPAC), and western North Pacific (WPAC). While single TC events (STCEs) occur more frequently than MTCEs in each basin, a substantial fraction (34%–57%) of all TCs within each basin occur during MTCEs. Comparison of the total monthly number of MTCEs and STCEs reveals significant correlations (0.79 ≤ R ≤ 0.90), while nonsignificant correlations exist between the annual number of MTCEs and STCEs. New TCs that form during MTCEs occur in the eastern main development region east of the STCE formation location in the NATL and EPAC, while new TC formation locations are spread evenly throughout the WPAC during both MTCEs and STCEs. The spatiotemporal separation between TCs during MTCEs is consistent among basins with median zonal distances between TCs of ~(1640–2010) km and median temporal separation between TC formation of 3.00–3.25 days. Composites of EPAC MTCEs suggest the existence of significantly stronger large-scale intraseasonal anomalies compared to STCEs, which may favor EPAC MTCE occurrence. Eastward zonal group velocities and the agreement of the zonal wavelength of TC-induced Rossby waves with the observed zonal distance between TCs suggests that Rossby wave radiation may contribute to a substantial fraction of MTCEs in all basins. These results suggest remarkable similarity in MTCE characteristics among basins, while potentially indicating that the large-scale environment is preconditioned for EPAC MTCE occurrence.

Publisher’s Note: This article was revised on 18 January 2017 to correct two editing errors in the Fig. 6 caption that appeared when originally published.

Corresponding author address: Department of Civil and Environmental Engineering, Princeton University, E-208 E-Quad, Princeton, NJ 08544. E-mail: benschenkel@gmail.com

Abstract

The present study provides a climatology of multiple tropical cyclone (TC) events (MTCEs) and the potential environmental factors responsible for triggering MTCEs in the North Atlantic (NATL), eastern North Pacific (EPAC), and western North Pacific (WPAC). While single TC events (STCEs) occur more frequently than MTCEs in each basin, a substantial fraction (34%–57%) of all TCs within each basin occur during MTCEs. Comparison of the total monthly number of MTCEs and STCEs reveals significant correlations (0.79 ≤ R ≤ 0.90), while nonsignificant correlations exist between the annual number of MTCEs and STCEs. New TCs that form during MTCEs occur in the eastern main development region east of the STCE formation location in the NATL and EPAC, while new TC formation locations are spread evenly throughout the WPAC during both MTCEs and STCEs. The spatiotemporal separation between TCs during MTCEs is consistent among basins with median zonal distances between TCs of ~(1640–2010) km and median temporal separation between TC formation of 3.00–3.25 days. Composites of EPAC MTCEs suggest the existence of significantly stronger large-scale intraseasonal anomalies compared to STCEs, which may favor EPAC MTCE occurrence. Eastward zonal group velocities and the agreement of the zonal wavelength of TC-induced Rossby waves with the observed zonal distance between TCs suggests that Rossby wave radiation may contribute to a substantial fraction of MTCEs in all basins. These results suggest remarkable similarity in MTCE characteristics among basins, while potentially indicating that the large-scale environment is preconditioned for EPAC MTCE occurrence.

Publisher’s Note: This article was revised on 18 January 2017 to correct two editing errors in the Fig. 6 caption that appeared when originally published.

Corresponding author address: Department of Civil and Environmental Engineering, Princeton University, E-208 E-Quad, Princeton, NJ 08544. E-mail: benschenkel@gmail.com
Save
  • Aiyyer, A., and J. Molinari, 2008: MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. J. Atmos. Sci., 65, 26912704, doi:10.1175/2007JAS2348.1.

    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., A. Mekonnen, and C. J. Schreck III, 2012: Projection of tropical cyclones on wavenumber–frequency-filtered equatorial waves. J. Climate, 25, 36533658, doi:10.1175/JCLI-D-11-00451.1.

    • Search Google Scholar
    • Export Citation
  • Anyamba, E. K., and B. C. Weare, 1995: Temporal variability of the 40–50-day oscillation in tropical convection. Int. J. Climatol., 15, 379402, doi:10.1002/joc.3370150404.

    • Search Google Scholar
    • Export Citation
  • Brammer, A., and C. Thorncroft, 2015: Comparison of HS3 observations and global reanalysis models. Proc. 2015 HS3 Science Meeting, Moffett Field, CA, NASA. [Available online at https://espo.nasa.gov/missions/sites/default/files/documents/Comparison%20of%20HS3%20Observations%20and%20Global%20Reanalysis%20models.pdf.]

  • Briegel, L., and W. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413, doi:10.1175/1520-0493(1997)125<1397:LSIOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1974: Characteristics of North African easterly waves during the summers of 1968 and 1969. J. Atmos. Sci., 31, 15561570, doi:10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 58105825, doi:10.1175/2010JCLI3575.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Carr, L., and R. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265289, doi:10.1175/1520-0493(1995)123<0265:MILTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chavas, D., and K. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Davidson, N., and H. Hendon, 1989: Downstream development in the Southern Hemisphere monsoon during FGGE/WMONEX. Mon. Wea. Rev., 117, 14581470, doi:10.1175/1520-0493(1989)117<1458:DDITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., and A. Aiyyer, 2013: Energy dispersion in African easterly waves. J. Atmos. Sci., 70, 130145, doi:10.1175/JAS-D-12-019.1.

  • Dickinson, M., and J. Molinari, 2002: Mixed Rossby–gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 21832196, doi:10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J., G. Lehmiller, and T. Kimberlain, 1996: Objective classification of Atlantic hurricanes. J. Climate, 9, 28802889, doi:10.1175/1520-0442(1996)009<2880:OCOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Ferreira, R., and W. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285, doi:10.1175/1520-0469(1997)054<0261:BAOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 572586, doi:10.1175/1520-0493(1982)110<0572:LSCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W., and P. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, doi:10.1175/MWR3204.1.

    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113, 647658, doi:10.1175/1520-0493(1985)113<0647:VNMTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S., C. Landsea, A. Mestas-Nuñez, and W. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1985: Tropical cyclone climatology. WMO Tech. Doc. 72, Vol. 1, 145 pp.

  • Guishard, M. P., J. L. Evans, and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594, doi:10.1175/2008JCLI2346.1.

    • Search Google Scholar
    • Export Citation
  • Hart, R., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Phys., 56, 5779, doi:10.1007/BF01022521.

  • Kiladis, G., M. Wheeler, P. Haertel, K. Straub, and P. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Krouse, K. D., and A. H. Sobel, 2010: An observational study of multiple tropical cyclone events in the western North Pacific. Tellus, 62A, 256265, doi:10.1111/j.1600-0870.2010.00435.x.

    • Search Google Scholar
    • Export Citation
  • Krouse, K. D., A. H. Sobel, and L. Polvani, 2008: On the wavelength of the Rossby waves radiated by tropical cyclones. J. Atmos. Sci., 65, 644654, doi:10.1175/2007JAS2402.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C., W. Zhou, J. C. Chan, and P. Huang, 2012: Asymmetric modulation of western North Pacific cyclogenesis by the Madden–Julian oscillation under ENSO conditions. J. Climate, 25, 53745385, doi:10.1175/JCLI-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. Hendon, and J. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and D. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and D. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., and D. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, doi:10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, doi:10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • McBride, J., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, doi:10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., G. Deane, L. Bosart, C. Davis, and T. Galarneau Jr., 2008: Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Mon. Wea. Rev., 136, 12841304, doi:10.1175/2007MWR2245.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., T. Galarneau Jr., L. Bosart, R. Moore, and O. Martius, 2013: A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Wea. Rev., 141, 19631989, doi:10.1175/MWR-D-12-00186.1.

    • Search Google Scholar
    • Export Citation
  • Merrill, R., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64, 777786.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., Y. Nakagomi, Y. Suzuki, N. Hasegawa, and A. Kadokura, 1985: Global analysis of the lower tropospheric disturbances in the tropics during the northern summer of the FGGE year. I. Global features of the disturbances. J. Meteor. Soc. Japan, 63, 119.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the western North Pacific Ocean. Geophys. Res. Lett., 40, 46804684, doi:10.1002/grl.50548.

    • Search Google Scholar
    • Export Citation
  • Ramage, C., and A. Hori, 1981: Meteorological aspects of El Niño. Mon. Wea. Rev., 109, 18271835, doi:10.1175/1520-0493(1981)109<1827:MAOEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E., and G. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, S.-P. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of east Pacific intraseasonal variability during boreal summer. J. Climate, 26, 35753596, doi:10.1175/JCLI-D-12-00499.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2014: The role of interactions between multiscale circulations on the observed zonally averaged zonal wind variability associated with the Madden–Julian oscillation. J. Atmos. Sci., 71, 38163836, doi:10.1175/JAS-D-13-0304.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B., and R. Hart, 2012: An examination of tropical cyclone position, intensity, and intensity life cycle within atmospheric reanalysis datasets. J. Climate, 25, 34533475, doi:10.1175/2011JCLI4208.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B., and R. Hart, 2015: An analysis of the environmental moisture impacts of western North Pacific tropical cyclones. J. Climate, 28, 26002622, doi:10.1175/JCLI-D-14-00213.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C., and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734, doi:10.1175/MWR-D-10-05060.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C., J. Molinari, and K. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209, doi:10.1175/2010JAS3396.1.

    • Search Google Scholar
    • Export Citation
  • Schreck, C., J. Molinari, and A. Aiyyer, 2012: A global view of equatorial waves and tropical cyclogenesis. Mon. Wea. Rev., 140, 774788, doi:10.1175/MWR-D-11-00110.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and K. V. Ooyama, 1990: Barotropic vortex evolution on a beta plane. J. Atmos. Sci., 47, 170187, doi:10.1175/1520-0469(1990)047<0170:BVEOAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722, doi:10.1175/MWR-D-10-05028.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, doi:10.1175/MWR-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and S. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, doi:10.1029/2009GL041469.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2005: ITCZ breakdown in three-dimensional flows. J. Atmos. Sci., 62, 14971512, doi:10.1175/JAS3409.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2006: The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Wea. Rev., 134, 14051421, doi:10.1175/MWR3130.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H.-R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829, doi:10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 32-year reanalysis intercomparison of tropical cyclone structure in the eastern North Pacific and North Atlantic. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 53. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper244195.html.]

  • Wood, K. M., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, doi:10.1002/2015GL066697.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 509 180 7
PDF Downloads 417 167 7