Projecting and Forecasting Winter Precipitation Extremes and Meteorological Drought in California Using the North Pacific High Sea Level Pressure Anomaly

Mariza Costa-Cabral Northwest Hydraulic Consultants, Inc., Seattle, Washington

Search for other papers by Mariza Costa-Cabral in
Current site
Google Scholar
PubMed
Close
,
John S. Rath Research and Development Group, Tetra Tech, Inc., Lafayette, California

Search for other papers by John S. Rath in
Current site
Google Scholar
PubMed
Close
,
William B. Mills Research and Development Group, Tetra Tech, Inc., Lafayette, California

Search for other papers by William B. Mills in
Current site
Google Scholar
PubMed
Close
,
Sujoy B. Roy Research and Development Group, Tetra Tech, Inc., Lafayette, California

Search for other papers by Sujoy B. Roy in
Current site
Google Scholar
PubMed
Close
,
Peter D. Bromirski Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Peter D. Bromirski in
Current site
Google Scholar
PubMed
Close
, and
Cristina Milesi NASA Ames Research Center, Moffett Field, California

Search for other papers by Cristina Milesi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.

Corresponding author address: Mariza Costa-Cabral, Northwest Hydraulic Consultants, Inc., 16300 Christensen Road, Suite 350, Seattle, WA 98188. E-mail: mcabral@nhcweb.com

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0525.s1.

Abstract

Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.

Corresponding author address: Mariza Costa-Cabral, Northwest Hydraulic Consultants, Inc., 16300 Christensen Road, Suite 350, Seattle, WA 98188. E-mail: mcabral@nhcweb.com

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0525.s1.

Supplementary Materials

    • Supplemental Materials (PDF 14.56 MB)
Save
  • Battisti, D. S., and R. L. Naylor, 2009: Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240244, doi:10.1126/science.1164363.

    • Search Google Scholar
    • Export Citation
  • Berg, N., and A. Hall, 2015: Increased interannual precipitation extremes over California under climate change. J. Climate, 28, 63246334, doi:10.1175/JCLI-D-14-00624.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18A, 820829, doi:10.1111/j.2153-3490.1966.tb00303.x.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Brekke, L. D., E. P. Maurer, J. D. Anderson, M. D. Dettinger, E. S. Townsley, A. Harrison, and T. Pruitt, 2009: Assessing reservoir operations risk under climate change. Water Resour. Res., 45, W04411, doi:10.1029/2008WR006941.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, R. Murtugudde, D. Pozdnyakov, R. Seager, and S. E. Zebiak, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Cannon, A., 2015: Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate extremes indices. J. Climate, 28, 12601267, doi:10.1175/JCLI-D-14-00636.1.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 1999: Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. J. Climate, 12, 15061523, doi:10.1175/1520-0442(1999)012<1506:LSCACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrological extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extremes. Springer, 208 pp.

  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobée, 2007: Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res., 43, W03410, doi:10.1029/2005WR004545.

    • Search Google Scholar
    • Export Citation
  • Engle, R. F., and C. W. J. Granger, 1987: Co-integration and error correction: Representation, estimation and testing. Econometrica, 55, 251276, doi:10.2307/1913236.

    • Search Google Scholar
    • Export Citation
  • Fissekis, A., 2008: Climate change effects on the Sacramento basin’s flood control projects. M.S. thesis, Dept. of Civil and Environmental Engineering, University of California, Davis, 150 pp.

  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, doi:10.1002/2015GL065435.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., and J. Hill, 2007: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 648 pp.

  • Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and R. B. Rubin, 2013: Bayesian Data Analysis. CRC Press, 675 pp.

  • Gershunov, A., and T. Barnett, 1998: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. J. Climate, 11, 15751586, doi:10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and D. Cayan, 2003: Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Climate, 16, 27522765, doi:10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guirguis, J., and R. Avissar, 2008: An analysis of precipitation variability, persistence, and observational data uncertainty in the western United States. J. Hydrometeor., 9, 843865, doi:10.1175/2008JHM972.1.

    • Search Google Scholar
    • Export Citation
  • Hanak, E., and J. R. Lund, 2012: Adapting California’s water management to climate change. Climatic Change, 111, 1744, doi:10.1007/s10584-011-0241-3.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J., A. Gruber, C. R. Kondragunta, R. E. Livezey, and G. J. Huffman, 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11, 29602979, doi:10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature, 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehne, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. H., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, doi:10.1175/BAMS-D-12-00241-1.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., T. A. McMahon, and B. L. Finlayson, 2002: Variability of annual precipitation and its relationship to the El Niño–Southern Oscillation. J. Climate, 15, 545551, doi:10.1175/1520-0442(2002)015<0545:VOAPAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, doi:10.1038/302295a0.

  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Polade, S. D., A. Gershunov, D. R. Cayan, M. D. Dettinger, and D. W. Pierce, 2013: Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett., 40, 22962301, doi:10.1002/grl.50491.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationship. J. Climate, 9, 10431059, doi:10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and Coauthors, 2014: Enhancing climate resilience at NASA centers: A collaboration between science and stewardship. Bull. Amer. Meteor. Soc., 95, 13511363, doi:10.1175/BAMS-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schubert, S. D., Y. Chang, M. J. Suarez, and P. J. Pegion, 2008: ENSO and wintertime extreme precipitation events over the contiguous United States. J. Climate, 21, 2239, doi:10.1175/2007JCLI1705.1.

    • Search Google Scholar
    • Export Citation
  • Schwing, F. B., T. Murphree, and P. M. Green, 2002: The Northern Oscillation index (NOI): A new climate index for the northeast Pacific. Prog. Oceanogr., 53, 115139, doi:10.1016/S0079-6611(02)00027-7.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., B. Bonsal, and M. Khandekar, 1997: Canadian precipitation patterns associated with the Southern Oscillation. J. Climate, 10, 30163027, doi:10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shang, H., J. Yan, and Z. Zhang, 2011: El Niño–Southern Oscillation influence on winter maximum daily precipitation in California in a spatial model. Water Resour. Res., 47, W11507, doi:10.1029/2011WR010415.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., A. Timmermann, Y. Chikamoto, S. Langford, and P. DiNezio, 2015: Stochastically generated North American megadroughts. J. Climate, 28, 18651880, doi:10.1175/JCLI-D-13-00689.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., M. Tsiang, M. Haugen, D. Singh, A. Charland, B. Rajaratnam, and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change [in “Explaining Extreme Events of 2013”]. Bull. Amer. Meteor. Soc., 95 (7), S3S7.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327339, doi:10.1023/A:1005488920935.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and X. Zhang, 2008: Downscaling and projection of winter extreme daily precipitation over North America. J. Climate, 21, 923937, doi:10.1175/2007JCLI1671.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., W.-R. Huang, and J.-H. Yoon, 2015: The North American winter ‘dipole’ and extremes activity: A CMIP5 assessment. Atmos. Sci. Lett., 16, 338345, doi:10.1002/asl2.565.

    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 704 pp.

  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, doi:10.1002/2015GL064924.

    • Search Google Scholar
    • Export Citation
  • Willis, A. D., J. R. Lund, E. S. Townsley, and B. A. Faber, 2011: Climate change and flood operations in the Sacramento Basin, California. San Francisco Estuary Watershed Sci., 9 (2), 118, doi:10.15447/sfews.2014v9iss2art3.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324, doi:10.1002/j.1477-8696.1998.tb06408.x.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., S.-Y. Wang, R. R. Gillies, B. Kravitz, L. Hipps, and P. J. Rasch, 2015: Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nature Commun., 6, 8657, doi:10.1038/ncomms9657.

    • Search Google Scholar
    • Export Citation
  • Zhang, U., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Wang, F. W. Zwiers, and P. Y. Groisman, 2010: The influence of large-scale climate variability on winter maximum daily precipitation over North America. J. Climate, 23, 29022915, doi:10.1175/2010JCLI3249.1.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., J. P. Hughes, D. P. Lettenmaier, and H. von Storch, 1995: Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. J. Climate, 8, 10231042, doi:10.1175/1520-0442(1995)008<1023:SCORCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 59 7
PDF Downloads 222 45 1