Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

Sirpa Häkkinen NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sirpa Häkkinen in
Current site
Google Scholar
PubMed
Close
,
Peter B. Rhines University of Washington, Seattle, Washington

Search for other papers by Peter B. Rhines in
Current site
Google Scholar
PubMed
Close
, and
Denise L. Worthen NASA Goddard Space Flight Center, Greenbelt, Maryland, and Wyle STE Group, Houston, Texas

Search for other papers by Denise L. Worthen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0–700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature–salinity (θS) relationship (known as “spice” variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0607.s1.

Corresponding author address: Sirpa Häkkinen, NASA Goddard Space Flight Center, Code 615, Greenbelt, MD 20771. E-mail: sirpa.hakkinen@nasa.gov

Abstract

This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0–700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature–salinity (θS) relationship (known as “spice” variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0607.s1.

Corresponding author address: Sirpa Häkkinen, NASA Goddard Space Flight Center, Code 615, Greenbelt, MD 20771. E-mail: sirpa.hakkinen@nasa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 25.41 MB)
Save
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Källen, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, doi:10.1002/grl.50382.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, doi:10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. McDougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4, 438456, doi:10.1175/1520-0442(1991)004<0438:AMOSLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, R., R. Dickson, and I. Yashayev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426, 826829, doi:10.1038/nature02206.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, doi:10.1002/2014GL059239.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, doi:10.1175/2008JCLI2131.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2014: Meridional displacement of the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc. London, 372A, 20130273, doi:10.1098/rsta.2013.0273.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, doi:10.1002/2013JC009067.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2015: Heat content variability in the North Atlantic Ocean in ocean reanalyses. Geophys. Res. Lett., 42, 29012909, doi:10.1002/2015GL063299.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, doi:10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and C. Cruz, 2009: Decadal response of global circulation to Southern Ocean zonal wind stress perturbation. J. Phys. Oceanogr., 39, 18881904, doi:10.1175/2009JPO4070.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403408, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Leadbetter, S. J., R. G. Williams, E. L. McDonagh, and B. A. King, 2007: A twenty year reversal in water mass trends in the subtropical North Atlantic. Geophys. Res. Lett., 34, L12608, doi:10.1029/2007GL029957.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., S. Leadbetter, R. G. Williams, V. Roussenov, M. S. C. Reed, and N. J. Moore, 2008: The spatial pattern and mechanisms of heat content change in the North Atlantic. Science, 319, 800803, doi:10.1126/science.1146436.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. C. Johnson, 2008: Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J. Climate, 21, 56295641, doi:10.1175/2008JCLI2259.1.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. C. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Climate, 27, 19451957, doi:10.1175/JCLI-D-12-00752.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., K. C. Armour, J. R. Scott, Y. Kostov, U. Hausmann, D. Ferreira, T. G. Shepherd, and C. M. Bitz, 2014: The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. Roy. Soc. London, 372A, 20130040, doi:10.1098/rsta.2013.0040.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, doi:10.1175/JCLI-D-11-00612.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Montelesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, R. X. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, doi:10.1175/JCLI-D-14-00809.1.

    • Search Google Scholar
    • Export Citation
  • Williams, R., V. Roussenov, D. Smith, and M. S. Lozier, 2014: Decadal evolution of ocean thermal anomalies in the North Atlantic: The effects of Ekman, overturning, and horizontal transport. J. Climate, 27, 698719, doi:10.1175/JCLI-D-12-00234.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and L. Sheldon, 2012: On the North Atlantic Ocean heat content change between 1955–70 and 1980–95. J. Climate, 25, 36193628, doi:10.1175/JCLI-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1389 396 40
PDF Downloads 1250 349 38