Stratospheric Temperature Trends over 1979–2015 Derived from Combined SSU, MLS, and SABER Satellite Observations

William J. Randel National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William J. Randel in
Current site
Google Scholar
PubMed
Close
,
Anne K. Smith National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Anne K. Smith in
Current site
Google Scholar
PubMed
Close
,
Fei Wu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Fei Wu in
Current site
Google Scholar
PubMed
Close
,
Cheng-Zhi Zou Center for Satellite Applications and Research, NOAA/NESDIS, College Park, Maryland

Search for other papers by Cheng-Zhi Zou in
Current site
Google Scholar
PubMed
Close
, and
Haifeng Qian Earth Resource Technology, Inc., Laurel, Maryland

Search for other papers by Haifeng Qian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Temperature trends in the middle and upper stratosphere are evaluated using measurements from the Stratospheric Sounding Unit (SSU), combined with data from the Aura Microwave Limb Sounder (MLS) and Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instruments. Data from MLS and SABER are vertically integrated to approximate the SSU weighting functions and combined with SSU to provide a data record spanning 1979–2015. Vertical integrals are calculated using empirically derived Gaussian weighting functions, which provide improved agreement with high-latitude SSU measurements compared to previously derived weighting functions. These merged SSU data are used to evaluate decadal-scale trends, solar cycle variations, and volcanic effects from the lower to the upper stratosphere. Episodic warming is observed following the volcanic eruptions of El Chichón (1982) and Mt. Pinatubo (1991), focused in the tropics in the lower stratosphere and in high latitudes in the middle and upper stratosphere. Solar cycle variations are centered in the tropics, increasing in amplitude from the lower to the upper stratosphere. Linear trends over 1979–2015 show that cooling increases with altitude from the lower stratosphere (from ~−0.1 to −0.2 K decade−1) to the middle and upper stratosphere (from ~−0.5 to −0.6 K decade−1). Cooling in the middle and upper stratosphere is relatively uniform in latitudes north of about 30°S, but trends decrease to near zero over the Antarctic. Mid- and upper-stratospheric temperatures show larger cooling over the first half of the data record (1979–97) compared to the second half (1998–2015), reflecting differences in upper-stratospheric ozone trends between these periods.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Randel, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: randel@ucar.edu

Abstract

Temperature trends in the middle and upper stratosphere are evaluated using measurements from the Stratospheric Sounding Unit (SSU), combined with data from the Aura Microwave Limb Sounder (MLS) and Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instruments. Data from MLS and SABER are vertically integrated to approximate the SSU weighting functions and combined with SSU to provide a data record spanning 1979–2015. Vertical integrals are calculated using empirically derived Gaussian weighting functions, which provide improved agreement with high-latitude SSU measurements compared to previously derived weighting functions. These merged SSU data are used to evaluate decadal-scale trends, solar cycle variations, and volcanic effects from the lower to the upper stratosphere. Episodic warming is observed following the volcanic eruptions of El Chichón (1982) and Mt. Pinatubo (1991), focused in the tropics in the lower stratosphere and in high latitudes in the middle and upper stratosphere. Solar cycle variations are centered in the tropics, increasing in amplitude from the lower to the upper stratosphere. Linear trends over 1979–2015 show that cooling increases with altitude from the lower stratosphere (from ~−0.1 to −0.2 K decade−1) to the middle and upper stratosphere (from ~−0.5 to −0.6 K decade−1). Cooling in the middle and upper stratosphere is relatively uniform in latitudes north of about 30°S, but trends decrease to near zero over the Antarctic. Mid- and upper-stratospheric temperatures show larger cooling over the first half of the data record (1979–97) compared to the second half (1998–2015), reflecting differences in upper-stratospheric ozone trends between these periods.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: William Randel, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: randel@ucar.edu
Save
  • Bourassa, A. E., D. A. Degenstein, W. J. Randel, J. M. Zawodny, E. Kyrola, C. A. McLinden, C. E. Sioris, and C. Z. Roth, 2014: Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations. Atmos. Chem. Phys., 14, 69836994, doi:10.5194/acp-14-6983-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, Q. Liu, P. V. Delst, and F. Weng, 2011: Community radiative transfer model for Stratospheric Sounding Unit. J. Atmos. Oceanic Technol., 28, 767778, doi:10.1175/2010JTECHA1509.1.

    • Search Google Scholar
    • Export Citation
  • Chiodo, G., N. Calvo, D. R. Marsh, and R. Garcia-Herrera, 2012: The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D06109, doi:10.1029/2011JD016393.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. CRC Press, 436 pp.

  • Free, M., and J. Lanzante, 2009: Effect of volcanic eruptions on the vertical temperature profile in radiosonde data and climate models. J. Climate, 22, 29252939, doi:10.1175/2008JCLI2562.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. Solomon, and P. Lin, 2010: On the seasonal dependence of tropical lower-stratospheric temperature trends. Atmos. Chem. Phys., 10, 26432653, doi:10.5194/acp-10-2643-2010.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Lin, S. Solomon, and D. L. Hartmann, 2015: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980. J. Geophys. Res. Atmos., 120, 10 21410 228, doi:10.1002/2015JD023657.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey, 2015: Global temperature response to the major volcanic eruptions in multiple reanalysis datasets. Atmos. Chem. Phys., 15, 13 50713 518, doi:10.5194/acpd-15-13315-2015.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Harris, N. R. P., and Coauthors, 2015: Past changes in the vertical distribution of ozone—Part 3: Analysis and interpretation of trends. Atmos. Chem. Phys., 15, 99659982, doi:10.5194/acp-15-9965-2015.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., and Coauthors, 2015: Solar signals in CMIP-5 simulations: The ozone response. Quart. J. Roy. Meteor. Soc., 141, 26702689, doi:10.1002/qj.2553.

    • Search Google Scholar
    • Export Citation
  • Kyrölä, E., M. Laine, V. Sofieva, J. Tamminen, S.-M. Päivärinta, S. Tukiainen, J. Zawodny, and L. Thomason, 2013: Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmos. Chem. Phys., 13, 10 64510 658, doi:10.5194/acp-13-10645-2013.

    • Search Google Scholar
    • Export Citation
  • Lee, H., and A. K. Smith, 2003: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on the stratospheric ozone changes in recent decades. J. Geophys. Res., 108, 4049, doi:10.1029/2001JD001503.

    • Search Google Scholar
    • Export Citation
  • Marsh, D., M. Mills, D. E. Kinnison, and J.-F. Lamarque, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, doi:10.1175/JCLI-D-12-00558.1.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, A. I. Jonsson, T. von Clarmann, and B. Funke, 2015: A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU. Atmos. Chem. Phys., 15, 92719284, doi:10.5194/acpd-15-10085-2015.

    • Search Google Scholar
    • Export Citation
  • Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and L. L. Gordley, 2001: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm Earth limb emission under non-LTE conditions. Geophys. Res. Lett., 28, 13911394, doi:10.1029/2000GL012189.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., and Coauthors, 2014: Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets. Quart. J. Roy. Meteor. Soc., 141, 20112031, doi:10.1002/qj.2492.

    • Search Google Scholar
    • Export Citation
  • Nash, J., and R. Saunders, 2015: A review of Stratospheric Sounding Unit radiance observations for climate trends and reanalyses. Quart. J. Roy. Meteor. Soc., 141, 21032113, doi:10.1002/qj.2505.

    • Search Google Scholar
    • Export Citation
  • Ossó, A., Y. Sola, K. Rosenlof, B. Hassler, J. Bech, and J. Lorente, 2015: How robust are trends in the Brewer–Dobson circulation derived from observed stratospheric temperatures? J. Climate, 28, 30243040, doi:10.1175/JCLI-D-14-00295.1.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71122, doi:10.1029/1999RG000065.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion. J. Climate, 12, 14671479, doi:10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, doi:10.1029/2008JD010013.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, doi:10.1029/1998RG000054.

  • Schwartz, M. J., and Coauthors, 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, doi:10.1029/2007JD008783.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., N. P. Gillett, J. R. Lanzante, K. P. Shine, and P. W. Thorne, 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev.: Climate Change, 2, 592616, doi:10.1002/wcc.125.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2016: Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos., 121, 664681, doi:10.1002/2015JD024039.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and Coauthors, 2003: A comparison of model-predicted trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129, 15651588, doi:10.1256/qj.02.186.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, P. A. Newman, S. Pawson, and M. R. Schoeberl, 2010: Relative contribution of greenhouse gases and ozone-depleting substances to temperature trends in the stratosphere: A chemistry–climate model study. J. Climate, 23, 2842, doi:10.1175/2009JCLI2955.1.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., and T. Peter, Eds., 2006: Assessment of stratospheric aerosol properties (ASAP). SPARC Rep. 4, WCRP-124, WMO/TD-1295, 321 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no4/.]

  • Thompson, D. W. J., and Coauthors, 2012: The mystery of recent stratospheric temperature trends. Nature, 491, 692697, doi:10.1038/nature11579.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., R. L. Panetta, and J. Estberg, 1993: Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50, 17511762, doi:10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., C.-Z. Zou, and H. Qian, 2012: Construction of stratospheric temperature data records from stratospheric sounding units. J. Climate, 25, 29312946, doi:10.1175/JCLI-D-11-00350.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2014: Scientific assessment of ozone depletion: 2014. WMO Global Ozone Research and Monitoring Project Rep. 55, 416 pp. [Available online at http://www.wmo.int/pages/prog/arep/gaw/ozone_2014/documents/Full_report_2014_Ozone_Assessment.pdf.]

  • Young, P. J., K. H. Rosenlof, S. Solomon, S. C. Sherwood, Q. Fu, and J.-F. Lamarque, 2012: Changes in stratospheric temperatures and their implications for changes in the Brewer–Dobson circulation, 1979–2005. J. Climate, 25, 17591772, doi:10.1175/2011JCLI4048.1.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., and H. Qian, 2016: Stratospheric temperature climate data from merged SSU and AMSU-A observations. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., H. Qian, W. Wang, L. Wang, and C. Long, 2014: Recalibration and merging of SSU observations for stratospheric temperature trend studies. J. Geophys. Res. Atmos., 119, 13 18013 205, doi:10.1002/2014JD021603.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1857 551 29
PDF Downloads 1206 228 13