All-Season Climatology and Variability of Atmospheric River Frequencies over the North Pacific

Bryan D. Mundhenk Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Bryan D. Mundhenk in
Current site
Google Scholar
PubMed
Close
,
Elizabeth A. Barnes Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Elizabeth A. Barnes in
Current site
Google Scholar
PubMed
Close
, and
Eric D. Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent work on atmospheric rivers (ARs) has led to a characterization of these impactful features as primarily cold-season phenomena. Here, an all-season analysis of AR incidence in the North Pacific basin is performed for the period spanning 1979–2014 using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis dataset. An occurrence-based detection algorithm is developed and employed to identify and characterize ARs in instantaneous fields of anomalous vertically integrated water vapor transport. The all-season climatology and variability of AR frequencies due to the seasonal cycle, the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), and their interactions are presented based on composites of the detected features. The results highlight that ARs exist throughout the year over the North Pacific, although their preferred locations shift substantially throughout the year. This seasonal cycle manifests itself as northward and westward displacement of ARs during the Northern Hemisphere warm seasons, rather than an absolute change in the number of ARs within the domain. It is also shown that changes to the North Pacific mean-state due to ENSO and the MJO may enhance or completely offset the seasonal cycle of AR activity, but that such influences on AR frequencies vary greatly based on location.

Corresponding author address: Bryan D. Mundhenk, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: bryan.mundhenk@colostate.edu

Abstract

Recent work on atmospheric rivers (ARs) has led to a characterization of these impactful features as primarily cold-season phenomena. Here, an all-season analysis of AR incidence in the North Pacific basin is performed for the period spanning 1979–2014 using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis dataset. An occurrence-based detection algorithm is developed and employed to identify and characterize ARs in instantaneous fields of anomalous vertically integrated water vapor transport. The all-season climatology and variability of AR frequencies due to the seasonal cycle, the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), and their interactions are presented based on composites of the detected features. The results highlight that ARs exist throughout the year over the North Pacific, although their preferred locations shift substantially throughout the year. This seasonal cycle manifests itself as northward and westward displacement of ARs during the Northern Hemisphere warm seasons, rather than an absolute change in the number of ARs within the domain. It is also shown that changes to the North Pacific mean-state due to ENSO and the MJO may enhance or completely offset the seasonal cycle of AR activity, but that such influences on AR frequencies vary greatly based on location.

Corresponding author address: Bryan D. Mundhenk, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: bryan.mundhenk@colostate.edu
Save
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110, 13931404, doi:10.1175/1520-0493(1982)110<1393:TRBIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate, 27, 88098826, doi:10.1175/JCLI-D-14-00312.1.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, doi:10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2013: Atmospheric rivers as drought busters on the U.S. West Coast. J. Hydrometeor., 14, 17211732, doi:10.1175/JHM-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, 2.12.6, doi:10.3389/feart.2014.00002.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, doi:10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, doi:10.1175/MWR-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, doi:10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and M. A. Alexander, 2015: ENSO’s modulation of water vapor transport over the Pacific–North American region. J. Climate, 28, 38463856, doi:10.1175/JCLI-D-14-00725.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, doi:10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, doi:10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, G. Villarini, B. Lloyd-Hughes, D. J. Brayshaw, and A. J. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, doi:10.1088/1748-9326/8/3/034010.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2004: Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophys. Res. Lett., 31, L14107, doi:10.1029/2004GL020474.

    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., G. Villarini, and D. A. Lavers, 2014: On the skill of numerical weather prediction models to forecast atmospheric rivers over the central United States. Geophys. Res. Lett., 41, 43544362, doi:10.1002/2014GL060299.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and Y. Zhu, 1994: Tropospheric rivers: A one-year record and possible application to ice core data. Geophys. Res. Lett., 21, 113116, doi:10.1029/93GL03113.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417360, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, doi:10.1175/JCLI-D-14-00034.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical/extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, doi:10.1175/JHM-D-12-076.1.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., T. C. Yeh, and N. E. La Seur, 1950: A study of variations of the general circulation. J. Meteor., 7, 181194, doi:10.1175/1520-0469(1950)007<0181:ASOVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ryoo, J.-M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, doi:10.1175/JCLI-D-12-00297.1.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, doi:10.1175/2009JCLI3128.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, doi:10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé Jr., 2015: Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, doi:10.1175/JHM-D-14-0080.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 21662176, doi:10.1109/TGRS.2012.2211024.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002, doi:10.1029/94GL01710.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3518 1077 51
PDF Downloads 2984 747 51