Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models

Elizabeth A. Barnes Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Elizabeth A. Barnes in
Current site
Google Scholar
PubMed
Close
,
Susan Solomon Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani Department of Applied Physics and Applied Mathematics, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The volcanic eruption of Mount Pinatubo in June 1991 is the largest terrestrial eruption since the beginning of the satellite era. Here, the monthly evolution of atmospheric temperature, zonal winds, and precipitation following the eruption in 14 CMIP5 models is analyzed and strong and robust stratospheric and tropospheric circulation responses are demonstrated in both hemispheres, with tropospheric anomalies maximizing in November 1991. The simulated Southern Hemisphere circulation response projects strongly onto the positive phase of the southern annular mode (SAM), while the Northern Hemisphere exhibits robust North Atlantic and North Pacific responses that differ significantly from that of the typical northern annular mode (NAM) pattern. In contrast, observations show a negative SAM following the eruption, and internal variability must be considered along with forced responses. Indeed, evidence is presented that the observed El Niño climate state during and after this eruption may oppose the eruption-forced positive SAM response, based on the El Niño–Southern Oscillation (ENSO) state and SAM response across the models. The results demonstrate that Pinatubo-like eruptions should be expected to force circulation anomalies across the globe and highlight that great care must be taken in diagnosing the forced response as it may not fall into typical seasonal averages or be guaranteed to project onto typical climate modes.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: eabarnes@atmos.colostate.edu

Abstract

The volcanic eruption of Mount Pinatubo in June 1991 is the largest terrestrial eruption since the beginning of the satellite era. Here, the monthly evolution of atmospheric temperature, zonal winds, and precipitation following the eruption in 14 CMIP5 models is analyzed and strong and robust stratospheric and tropospheric circulation responses are demonstrated in both hemispheres, with tropospheric anomalies maximizing in November 1991. The simulated Southern Hemisphere circulation response projects strongly onto the positive phase of the southern annular mode (SAM), while the Northern Hemisphere exhibits robust North Atlantic and North Pacific responses that differ significantly from that of the typical northern annular mode (NAM) pattern. In contrast, observations show a negative SAM following the eruption, and internal variability must be considered along with forced responses. Indeed, evidence is presented that the observed El Niño climate state during and after this eruption may oppose the eruption-forced positive SAM response, based on the El Niño–Southern Oscillation (ENSO) state and SAM response across the models. The results demonstrate that Pinatubo-like eruptions should be expected to force circulation anomalies across the globe and highlight that great care must be taken in diagnosing the forced response as it may not fall into typical seasonal averages or be guaranteed to project onto typical climate modes.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: eabarnes@atmos.colostate.edu
Save
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., N. W. Barnes, and L. M. Polvani, 2014: Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Climate, 27, 852867, doi:10.1175/JCLI-D-13-00246.1.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2008: Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño–Southern Oscillation. J. Climate, 21, 910922, doi:10.1175/2007JCLI1657.1.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., 2008: A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos. Res., 90, 223232, doi:10.1016/j.atmosres.2008.03.016.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2015: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans, 119, 56225637, doi:10.1002/2013JC009780.

    • Search Google Scholar
    • Export Citation
  • Driscoll, S., A. Bozzo, L. Gray, A. Robock, and G. Stenchikov, 2012: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res., 117, D17105, doi:10.1029/2012JD017607.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Graf, H., I. Kirchner, A. Robock, and I. Schult, 1993: Pinatubo eruption winter climate effects: Model versus observation. Climate Dyn., 9, 8193, doi:10.1007/BF00210011.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A., N. P. Gillett, M. Dall’Amico, and L. J. Gray, 2010: Southern Hemisphere atmospheric circulation response to the El Chichón and Pinatubo eruptions in coupled climate models. Quart. J. Roy. Meteor. Soc., 136, 18131822, doi:10.1002/qj.683.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Chiba, A. Koide, A. Kitoh, and Y. Nikaidou, 1996: Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere. J. Meteor. Soc. Japan, 74, 365382.

    • Search Google Scholar
    • Export Citation
  • Lehner, F., A. P. Schurer, G. C. Hegerl, C. Deser, and L. Thomas, 2016: The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett., 43, 28512858, doi:10.1002/2016GL067935.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., and D. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Maher, N., S. McGregor, M. H. England, and A. S. Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 60246033, doi:10.1002/2015GL064751.

    • Search Google Scholar
    • Export Citation
  • Muthers, S., and Coauthors, 2014: Northern Hemispheric winter warming pattern after tropical volcanic eruptions: Sensitivity to the ozone climatology. J. Geophys. Res. Atmos., 119, 13401355, doi:10.1002/2013JD020138.

    • Search Google Scholar
    • Export Citation
  • Ortega, P., F. Lehner, D. Swingdouw, V. Masson-Delmotte, C. C. Raible, M. Casado, and P. Yiou, 2015: A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature, 523, 7174, doi:10.1038/nature14518.

    • Search Google Scholar
    • Export Citation
  • Ottera, O. H., 2008: Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv. Atmos. Sci., 25, 213226, doi:10.1007/s00376-008-0213-3.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and H.-F. Graf, 1995: The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J. Climate, 8, 22812295, doi:10.1175/1520-0442(1995)008<2281:TSCBTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, doi:10.1029/1998RG000054.

  • Robock, A., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 10861103, doi:10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robock, A., T. Adams, M. Moore, L. Oman, and G. Stenchikov, 2007: Southern Hemisphere atmospheric circulation effects of the 1991 Mount Pinatubo eruption. Geophys. Res. Lett., 34, L23710, doi:10.1029/2007GL031403.

    • Search Google Scholar
    • Export Citation
  • Roscoe, H., and J. Haigh, 2007: Influences of ozone depletion, the solar cycle and the QBO on the southern annular mode. Quart. J. Roy. Meteor. Soc., 133, 18551864, doi:10.1002/qj.153.

    • Search Google Scholar
    • Export Citation
  • Rozanov, E. V., M. E. Schlesinger, N. G. Andronova, F. Yang, S. L. Malyshev, V. A. Zubov, T. A. Egorova, and B. Li, 2002: Climate/chemistry effects of the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere GCM with interactive photochemistry. J. Geophys. Res., 107, 4594, doi:10.1029/2001JD000974.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2013a: Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA, 110, 2633, doi:10.1073/pnas.1210514109.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2013b: Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. USA, 110, 17 23517 240, doi:10.1073/pnas.1305332110.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, doi:10.1029/1999RG900008.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, A. Robock, V. Ramaswamy, and M. D. Schwarzkopf, 2002: Arctic Oscillation response to the 1991 Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, M., C. Timmreck, M. Giorgetta, H.-F. Graf, and G. Stenchikov, 2009: Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5—Part 1: Sensitivity to the modes of atmospheric circulation and boundary conditions. Atmos. Chem. Phys., 9, 757769, doi:10.5194/acp-9-757-2009.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Timmreck, C., 2012: Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev.: Climate Change, 3, 545564, doi:10.1002/wcc.192.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 905 335 9
PDF Downloads 472 78 4