On the Abruptness of Bølling–Allerød Warming

Zhan Su Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Zhan Su in
Current site
Google Scholar
PubMed
Close
,
Andrew P. Ingersoll Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Andrew P. Ingersoll in
Current site
Google Scholar
PubMed
Close
, and
Feng He Center for Climatic Research, Nelson Institute for Environmental Studies, University of Wisconsin–Madison, Madison, Wisconsin, and College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Feng He in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous observations and simulations suggest that an approximate 3°–5°C warming occurred at intermediate depths in the North Atlantic over several millennia during Heinrich stadial 1 (HS1), which induces warm salty water (WSW) lying beneath surface cold freshwater. This arrangement eventually generates ocean convective available potential energy (OCAPE), the maximum potential energy releasable by adiabatic vertical parcel rearrangements in an ocean column. The authors find that basin-scale OCAPE starts to appear in the North Atlantic (~67.5°–73.5°N) and builds up over decades at the end of HS1 with a magnitude of about 0.05 J kg−1. OCAPE provides a key kinetic energy source for thermobaric cabbeling convection (TCC). Using a high-resolution TCC-resolved regional model, it is found that this decadal-scale accumulation of OCAPE ultimately overshoots its intrinsic threshold and is released abruptly (~1 month) into kinetic energy of TCC, with further intensification from cabbeling. TCC has convective plumes with approximately 0.2–1-km horizontal scales and large vertical displacements (~1 km), which make TCC difficult to be resolved or parameterized by current general circulation models. The simulation herein indicates that these local TCC events are spread quickly throughout the OCAPE-contained basin by internal wave perturbations. Their convective plumes have large vertical velocities (~8–15 cm s−1) and bring the WSW to the surface, causing an approximate 2°C sea surface warming for the whole basin (~700 km) within a month. This exposes a huge heat reservoir to the atmosphere, which helps to explain the abrupt Bølling–Allerød warming.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125. E-mail: zssu@caltech.edu

Abstract

Previous observations and simulations suggest that an approximate 3°–5°C warming occurred at intermediate depths in the North Atlantic over several millennia during Heinrich stadial 1 (HS1), which induces warm salty water (WSW) lying beneath surface cold freshwater. This arrangement eventually generates ocean convective available potential energy (OCAPE), the maximum potential energy releasable by adiabatic vertical parcel rearrangements in an ocean column. The authors find that basin-scale OCAPE starts to appear in the North Atlantic (~67.5°–73.5°N) and builds up over decades at the end of HS1 with a magnitude of about 0.05 J kg−1. OCAPE provides a key kinetic energy source for thermobaric cabbeling convection (TCC). Using a high-resolution TCC-resolved regional model, it is found that this decadal-scale accumulation of OCAPE ultimately overshoots its intrinsic threshold and is released abruptly (~1 month) into kinetic energy of TCC, with further intensification from cabbeling. TCC has convective plumes with approximately 0.2–1-km horizontal scales and large vertical displacements (~1 km), which make TCC difficult to be resolved or parameterized by current general circulation models. The simulation herein indicates that these local TCC events are spread quickly throughout the OCAPE-contained basin by internal wave perturbations. Their convective plumes have large vertical velocities (~8–15 cm s−1) and bring the WSW to the surface, causing an approximate 2°C sea surface warming for the whole basin (~700 km) within a month. This exposes a huge heat reservoir to the atmosphere, which helps to explain the abrupt Bølling–Allerød warming.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125. E-mail: zssu@caltech.edu
Save
  • Adkins, J. F., A. P. Ingersoll, and C. Pasquero, 2005: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev., 24, 581594, doi:10.1016/j.quascirev.2004.11.005.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 1999: Open-ocean deep convection due to thermobaricity: 2. Numerical experiments. J. Geophys. Res., 104, 52355249, doi:10.1029/1998JC900062.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., 2006: Thermobaric deep convection, baroclinic instability, and their roles in vertical heat transport around Maud Rise in the Weddell Sea. J. Geophys. Res., 111, C09027, doi:10.1029/2005JC003284.

    • Search Google Scholar
    • Export Citation
  • Akitomo, K., T. Awaji, and N. Imasato, 1995: Open-ocean deep convection in the Weddell Sea: Two-dimensional numerical experiments with a nonhydrostatic model. Deep-Sea Res. I, 42, 5373, doi:10.1016/0967-0637(94)00035-Q.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., 2007: Wally was right: Predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu. Rev. Earth Planet. Sci., 35, 241272, doi:10.1146/annurev.earth.35.081006.131524.

    • Search Google Scholar
    • Export Citation
  • Alvarez-Solas, J., S. Charbit, C. Ritz, D. Paillard, G. Ramstein, and C. Dumas, 2010: Links between ocean temperature and iceberg discharge during Heinrich events. Nat. Geosci., 3, 122126, doi:10.1038/ngeo752.

    • Search Google Scholar
    • Export Citation
  • Arzel, O., A. Colin de Verdière, and M. H. England, 2010: The role of oceanic heat transport and wind stress forcing in abrupt millennial-scale climate transitions. J. Climate, 23, 22332256, doi:10.1175/2009JCLI3227.1.

    • Search Google Scholar
    • Export Citation
  • Ashkenazy, Y., M. Losch, H. Gildor, D. Mirzayof, and E. Tziperman, 2013: Multiple sea-ice states and abrupt MOC transitions in a general circulation ocean model. Climate Dyn., 40, 18031817, doi:10.1007/s00382-012-1546-2.

    • Search Google Scholar
    • Export Citation
  • Banderas, R., J. Álvarez-Solas, and M. Montoya, 2012: Role of CO2 and Southern Ocean winds in glacial abrupt climate change. Climate Past, 8, 10111021, doi:10.5194/cp-8-1011-2012.

    • Search Google Scholar
    • Export Citation
  • Brady, E. C., and B. L. Otto-Bliesner, 2011: The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Climate Dyn., 37, 15171532, doi:10.1007/s00382-010-0925-9.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1994: Massive iceberg discharges as triggers for global climate change. Nature, 372, 421424, doi:10.1038/372421a0.

  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, doi:10.1038/315021a0.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., G. Bond, M. Klas, G. Bonani, and W. Wolfli, 1990: A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469477, doi:10.1029/PA005i004p00469.

    • Search Google Scholar
    • Export Citation
  • Buizert, C., and Coauthors, 2014: Greenland temperature response to climate forcing during the last deglaciation. Science, 345, 11771180, doi:10.1126/science.1254961.

    • Search Google Scholar
    • Export Citation
  • Cai, W., 1996: The stability of NADMF under mixed boundary conditions with an improved diagnosed freshwater flux. J. Phys. Oceanogr., 26, 10811087, doi:10.1175/1520-0485(1996)026<1081:TSONUM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, A. E., and P. U. Clark, 2012: Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys., 50, RG4007, doi:10.1029/2011RG000371.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869, doi:10.1038/415863a.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., S. W. Hostetler, N. G. Pisias, A. Schmittner, and K. J. Meissner, 2007: Mechanisms for an 7-kyr climate and sea-level oscillation during marine isotope stage 3. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 209–246, doi:10.1029/173GM15.

  • Clement, A. C., and M. Cane, 1999: A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and millennial timescales. Part I: A modeling study of tropical Pacific variability. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 363–372.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., and E. D. Skyllingstad, 1996: An ocean large-eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res., 101, 10951110, doi:10.1029/95JC02828.

    • Search Google Scholar
    • Export Citation
  • Dokken, T. M., and E. Jansen, 1999: Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401, 458461, doi:10.1038/46753.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153158, doi:10.1038/35051500.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2002: Abrupt glacial climate changes due to stochastic resonance. Phys. Rev. Lett., 88, 038501, doi:10.1103/PhysRevLett.88.038501.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., and E. Tziperman, 2003: Sea-ice switches and abrupt climate change. Philos. Trans. Roy. Soc. London, 361A, 19351944, doi:10.1098/rsta.2003.1244.

    • Search Google Scholar
    • Export Citation
  • Gildor, H., Y. Ashkenazy, E. Tziperman, and I. Lev, 2014: The role of sea ice in the temperature–precipitation feedback of glacial cycles. Climate Dyn., 43, 10011010, doi:10.1007/s00382-013-1990-7.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2005: Thermobaric cabbeling over Maud Rise: Theory and large eddy simulation. Prog. Oceanogr., 67, 186244, doi:10.1016/j.pocean.2004.12.001.

    • Search Google Scholar
    • Export Citation
  • He, F., J. D. Shakun, P. U. Clark, A. E. Carlson, Z. Liu, B. L. Otto-Bliesner, and J. E. Kutzbach, 2013: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494, 8185, doi:10.1038/nature11822.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., 2004: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., H. A. Dijkstra, and J. A. Saenz, 2013: The energetics of a collapsing meridional overturning circulation. J. Phys. Oceanogr., 43, 15121524, doi:10.1175/JPO-D-12-0212.1.

    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., 2005: Boussinesq and anelastic approximations revisited: Potential energy release during thermobaric instability. J. Phys. Oceanogr., 35, 13591369, doi:10.1175/JPO2756.1.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies, 2006: Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Oceanic Technol., 23, 17091728, doi:10.1175/JTECH1946.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1979: On “chimney” formations in the ocean. J. Phys. Oceanogr., 9, 531554, doi:10.1175/1520-0485(1979)009<0531:OFITO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knorr, G., and G. Lohmann, 2007: Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst., 8, Q12006, doi:10.1029/2007GC001604.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Flückiger, T. Stocker, and A. Timmermann, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430, 851856, doi:10.1038/nature02786.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science, 325, 310314, doi:10.1126/science.1171041.

    • Search Google Scholar
    • Export Citation
  • Marcott, S. A., and Coauthors, 2011: Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad. Sci. USA, 108, 13 41513 419, doi:10.1073/pnas.1104772108.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1990: Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res., 95, 11 64111 654, doi:10.1029/JC095iC07p11641.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

    • Search Google Scholar
    • Export Citation
  • McManus, J., R. Francois, J.-M. Gherardi, L. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837, doi:10.1038/nature02494.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2000: Marginal thermobaric stability in the ice-covered upper ocean over Maud Rise. J. Phys. Oceanogr., 30, 27102722, doi:10.1175/1520-0485(2000)030<2710:MTSITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2003: Is thermobaricity a major factor in Southern Ocean ventilation? Antarct. Sci., 15, 153160, doi:10.1017/S0954102003001159.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., and Coauthors, 1996: The Antarctic Zone Flux Experiment. Bull. Amer. Meteor. Soc., 77, 12211232, doi:10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Ganopolski, and A. Levermann, 2007: Atlantic subsurface temperatures: Response to a shutdown of the overturning circulation and consequences for its recovery. J. Climate, 20, 48844898, doi:10.1175/JCLI4280.1.

    • Search Google Scholar
    • Export Citation
  • Mikolajewicz, U., and E. Maier‐Reimer, 1994: Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res., 99, 22 63322 644, doi:10.1029/94JC01989.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1994: Rapid climate transitions in a coupled ocean–atmosphere model. Nature, 372, 8285, doi:10.1038/372082a0.

  • Rahmstorf, S., 1995a: Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378, 145149, doi:10.1038/378145a0.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1995b: Multiple convection patterns and thermohaline flow in an idealized OGCM. J. Climate, 8, 30283039, doi:10.1175/1520-0442(1995)008<3028:MCPATF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2001: A simple model of seasonal open ocean convection. Part I: Theory. Ocean Dyn., 52, 2635, doi:10.1007/s10236-001-8174-4.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, doi:10.1038/nature01090.

  • Rasmussen, T. L., and E. Thomsen, 2004: The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 210, 101116, doi:10.1016/j.palaeo.2004.04.005.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, T. L., D. W. Oppo, E. Thomsen, and S. J. Lehman, 2003: Deep sea records from the southeast Labrador Sea: Ocean circulation changes and ice‐rafting events during the last 160,000 years. Paleoceanography, 18, 1018, doi:10.1029/2001PA000736.

    • Search Google Scholar
    • Export Citation
  • Reddy, J. N., 2002: Energy Principles and Variational Methods in Applied Mechanics. John Wiley & Sons, 592 pp.

  • Shaffer, G., S. M. Olsen, and C. J. Bjerrum, 2004: Ocean subsurface warming as a mechanism for coupling Dansgaard–Oeschger climate cycles and ice‐rafting events. Geophys. Res. Lett., 31, L24202, doi:10.1029/2004GL020968.

    • Search Google Scholar
    • Export Citation
  • Shakun, J. D., and Coauthors, 2012: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 4954, doi:10.1038/nature10915.

    • Search Google Scholar
    • Export Citation
  • Steffensen, J. P., and Coauthors, 2008: High-resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321, 680684, doi:10.1126/science.1157707.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. L. Stewart, and A. F. Thompson, 2014: An idealized model of Weddell gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, A. Stewart, and A. Thompson, 2016a: Ocean convective available potential energy. Part I: Concept and calculation. J. Phys. Oceanogr., 46, 10811096, doi:10.1175/JPO-D-14-0155.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, A. Stewart, and A. Thompson, 2016b: Ocean convective available potential energy. Part II: Energetics of thermobaric convection and thermobaric cabbeling. J. Phys. Oceanogr., 46, 10971115, doi:10.1175/JPO-D-14-0156.1.

    • Search Google Scholar
    • Export Citation
  • Thiagarajan, N., A. V. Subhas, J. R. Southon, J. M. Eiler, and J. F. Adkins, 2014: Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature, 511, 7578, doi:10.1038/nature13472.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica, 2003: Meltwater pulse 1A from Antarctica as a trigger of the Bølling–Allerød warm interval. Science, 299, 17091713, doi:10.1126/science.1081002.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 1995: Energetics of deep-decoupling oscillations. J. Phys. Oceanogr., 25, 420427, doi:10.1175/1520-0485(1995)025<0420:EODDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winton, M., and E. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23, 13891410, doi:10.1175/1520-0485(1993)023<1389:TOIBSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, F., 1995: A mechanistic model of ocean interdecadal thermohaline oscillations. J. Phys. Oceanogr., 25, 32393246, doi:10.1175/1520-0485(1995)025<3239:AMMOOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., Z. Liu, X. Zhang, I. Eisenman, and W. Liu, 2014: Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett., 41, 62526258, doi:10.1002/2014GL060891.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1212 363 39
PDF Downloads 688 166 19