On the Detection of Robust Multidecadal Changes in Earth’s Outgoing Longwave Radiation Spectrum

R. J. Bantges Imperial College London, London, and NERC National Centre for Earth Observation, United Kingdom

Search for other papers by R. J. Bantges in
Current site
Google Scholar
PubMed
Close
,
H. E. Brindley Imperial College London, London, and NERC National Centre for Earth Observation, United Kingdom

Search for other papers by H. E. Brindley in
Current site
Google Scholar
PubMed
Close
,
X. H. Chen University of Michigan, Ann Arbor, Michigan

Search for other papers by X. H. Chen in
Current site
Google Scholar
PubMed
Close
,
X. L. Huang University of Michigan, Ann Arbor, Michigan

Search for other papers by X. L. Huang in
Current site
Google Scholar
PubMed
Close
,
J. E. Harries Imperial College London, London, United Kingdom

Search for other papers by J. E. Harries in
Current site
Google Scholar
PubMed
Close
, and
J. E. Murray Imperial College London, London, United Kingdom

Search for other papers by J. E. Murray in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Differences between Earth’s global mean all-sky outgoing longwave radiation spectrum as observed in 1970 [Interferometric Infrared Spectrometer (IRIS)], 1997 [Interferometric Monitor for Greenhouse Gases (IMG)], and 2012 [Infrared Atmospheric Sounding Instrument (IASI)] are presented. These differences are evaluated to determine whether these are robust signals of multidecadal radiative forcing and hence whether there is the potential for evaluating feedback-type responses. IASI–IRIS differences range from +2 K in the atmospheric window (800–1000 cm−1) to −5.5 K in the 1304 cm−1 CH4 band center. Corresponding IASI–IMG differences are much smaller, at 0.2 and −0.8 K, respectively. More noticeably, IASI–IRIS differences show a distinct step change across the 1042 cm−1 O3 band that is not seen in IASI–IMG comparisons. This step change is a consequence of a difference in behavior when moving from colder to warmer scenes in the IRIS data compared to IASI and IMG. Matched simulations for the relevant periods using ERA reanalyses mimic the spectral behavior shown by IASI and IMG rather than by IRIS. These findings suggest that uncertainties in the spectral response of IRIS preclude the use of these data for quantitative assessments of forcing and feedback processes.

Denotes Open Access content.

Corresponding author address: R. J. Bantges, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, United Kingdom. E-mail: r.bantges@imperial.ac.uk

Abstract

Differences between Earth’s global mean all-sky outgoing longwave radiation spectrum as observed in 1970 [Interferometric Infrared Spectrometer (IRIS)], 1997 [Interferometric Monitor for Greenhouse Gases (IMG)], and 2012 [Infrared Atmospheric Sounding Instrument (IASI)] are presented. These differences are evaluated to determine whether these are robust signals of multidecadal radiative forcing and hence whether there is the potential for evaluating feedback-type responses. IASI–IRIS differences range from +2 K in the atmospheric window (800–1000 cm−1) to −5.5 K in the 1304 cm−1 CH4 band center. Corresponding IASI–IMG differences are much smaller, at 0.2 and −0.8 K, respectively. More noticeably, IASI–IRIS differences show a distinct step change across the 1042 cm−1 O3 band that is not seen in IASI–IMG comparisons. This step change is a consequence of a difference in behavior when moving from colder to warmer scenes in the IRIS data compared to IASI and IMG. Matched simulations for the relevant periods using ERA reanalyses mimic the spectral behavior shown by IASI and IMG rather than by IRIS. These findings suggest that uncertainties in the spectral response of IRIS preclude the use of these data for quantitative assessments of forcing and feedback processes.

Denotes Open Access content.

Corresponding author address: R. J. Bantges, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, United Kingdom. E-mail: r.bantges@imperial.ac.uk
Save
  • Ansell, C., H. Brindley, Y. Pradhan, and R. Saunders, 2014: Mineral dust aerosol net direct effect during GERBILS field campaign derived from SEVIRI and GERB. J. Geophys. Res. Atmos., 119, 40704086, doi:10.1002/2013JD020681.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, doi:10.1109/TGRS.2002.808356.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., Y. Jiang, and D. Elliott, 2011: Evaluation of cloudy data as stable references for climate research using AIRS and IRIS data. Earth Observing Systems XVI, J. J. Butler et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), 814304, doi:10.1117/12.892797.

  • Baldridge, A., S. Hook, C. Grove, and G. Rivera, 2009: The ASTER Spectral Library version 2.0. Remote Sens. Environ., 113, 711715, doi:10.1016/j.rse.2008.11.007.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, doi:10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brindley, H., and J. Harries, 2003: Observations of the infrared outgoing spectrum of the Earth from space: The effects of temporal and spatial sampling. J. Climate, 16, 38203833, doi:10.1175/1520-0442(2003)016<3820:OOTIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brindley, H., R. Bantges, J. Russell, J. Murray, C. Dancel, C. Belotti, and J. Harries, 2015: Spectral signatures of Earth’s climate variability over 5 years from IASI. J. Climate, 28, 16491660, doi:10.1175/JCLI-D-14-00431.1.

    • Search Google Scholar
    • Export Citation
  • Charlock, T., 1984: CO2 induced climatic-change and spectral variations in the outgoing terrestrial infrared radiation. Tellus, 36B, 139148, doi:10.1111/j.1600-0889.1984.tb00236.x.

    • Search Google Scholar
    • Export Citation
  • Chen, X., X. Huang, and X. Liu, 2013: Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies. J. Geophys. Res. Atmos., 118, 73097320, doi:10.1002/jgrd.50562.

    • Search Google Scholar
    • Export Citation
  • Compo, G., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and J. Gregory, 2006: The climate sensitivity and its components diagnosed from Earth radiation budget data. J. Climate, 19, 3952, doi:10.1175/JCLI3611.1.

    • Search Google Scholar
    • Export Citation
  • Fox, N., A. Kaiser-Weiss, W. Schmutz, K. Thome, D. Young, B. Wielicki, R. Winkler, and E. Woolliams, 2011: Accurate radiometry from space: An essential tool for climate studies. Philos. Trans. Roy. Soc. London, 369, doi:10.1098/rsta.2011.0246.

    • Search Google Scholar
    • Export Citation
  • Futyan, J., J. Russell, and J. Harries, 2005: Determining cloud forcing by cloud type from geostationary satellite data. Geophys. Res. Lett., 32, L08807, doi:10.1029/2004GL022275.

    • Search Google Scholar
    • Export Citation
  • Goody, R., R. Haskins, W. Abdou, and L. Chen, 1995: Detection of climate forcing using emission spectra. Earth Obs. Remote Sens., 13, 713722.

    • Search Google Scholar
    • Export Citation
  • Hanel, R., B. Conrath, V. Kunde, C. Prabhakara, I. Revah, V. Solomonson, and G. Wolford, 1972: The Nimbus 4 Infrared Spectroscopy Experiment. 1. Calibrated thermal emission spectra. J. Geophys. Res., 77, 26292641, doi:10.1029/JC077i015p02629.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 14311435, doi:10.1126/science.1110252.

    • Search Google Scholar
    • Export Citation
  • Harries, J., H. Brindley, P. Sagoo, and R. Bantges, 2001: Increases in greenhouse forcing inferred from the outgoing longwave spectra of the Earth in 1970 and 1997. Nature, 410, 355357, doi:10.1038/35066553.

    • Search Google Scholar
    • Export Citation
  • Harries, J., and Coauthors, 2005: The Geostationary Earth Radiation Budget Project. Bull. Amer. Meteor. Soc., 86, 945960, doi:10.1175/BAMS-86-7-945.

    • Search Google Scholar
    • Export Citation
  • Held, I., and B. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X., J. Cole, F. He, G. Potter, L. Oreopoulos, D. Lee, M. Suarez, and N. Loeb, 2013: Longwave band-by-band cloud radiative effect and its application in GCM evaluation. J. Climate, 26, 450467, doi:10.1175/JCLI-D-12-00112.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Kobayashi, H., Ed., 1999: Interferometric monitor for greenhouse gases. IMG Project Tech. Rep., Central Research Institute of Electric Power Industry, 50 pp.

  • Liu, X., W. Smith, D. Zhou, and A. Larar, 2006: Principal component–based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt., 45, 201209, doi:10.1364/AO.45.000201.

    • Search Google Scholar
    • Export Citation
  • Liu, X., D. Zhou, A. Larar, W. Smith, and S. Mango, 2007: Case-study of a principal-component-based radiative transfer model and retrieval algorithm using EAQUATE data. Quart. J. Roy. Meteor. Soc., 133, 243256, doi:10.1002/qj.156.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., and S. Kato, 2002: Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument. J. Climate, 15, 14741484, doi:10.1175/1520-0442(2002)015<1474:TOADRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N., B. Wielicki, F. Rose, and D. Doelling, 2007: Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophys. Res. Lett., 34, L03704, doi:10.1029/2006GL028196.

    • Search Google Scholar
    • Export Citation
  • Loveland, T., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. Yang, and J. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, doi:10.1080/014311600210191.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R., F. Volz, R. Fenn, J. Garing, and J. Selby, 1972: Optical properties of the atmosphere. 3rd ed. U.S. Air Force Cambridge Research Laboratories Rep. AFCRL-72-0497, 80 pp.

  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Rep. 14, 59 pp.

  • Potter, G., and R. Cess, 2004: Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109, D02106, doi:10.1029/2003JD004018.

    • Search Google Scholar
    • Export Citation
  • Simeoni, D., and Coauthors, 2004: Design and development of IASI instrument. Infrared Spaceborne Remote Sensing XII, M. Strojnik, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5543), 208–219, doi:10.1117/12.561090.

  • Slingo, A., and M. Webb, 1997: The spectral signature of global warming. Quart. J. Roy. Meteor. Soc., 123, 293307, doi:10.1002/qj.49712353803.

    • Search Google Scholar
    • Export Citation
  • Soden, B., D. Jackson, V. Ramaswamy, M. Schwarzkopf, and L. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin, 2010: A 6-year global cloud climatology from the Atmospheric Infrared Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys., 10, 71977214, doi:10.5194/acp-10-7197-2010.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Tett, S., D. Rowlands, M. Mineter, and C. Cartis, 2013: Can top-of-atmosphere radiation measurements constrain climate predictions? Part II: Climate sensitivity. J. Climate, 26, 93679383, doi:10.1175/JCLI-D-12-00596.1.

    • Search Google Scholar
    • Export Citation
  • Warren, S., R. Eastman, and C. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., B. Barkstrom, E. Harrison, R. Lee, G. Smith, and J. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
  • Wilber, A., D. Kratz, and S. Gupta, 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Rep. NASA/TP-1999-209362, 35 pp.

  • Wylie, D., D. Jackson, W. Menzel, and J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, doi:10.1175/JCLI3461.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 628 150 9
PDF Downloads 339 95 1