Does the Summer Arctic Frontal Zone Influence Arctic Ocean Cyclone Activity?

Alex D. Crawford Cooperative Institute for Research in Environmental Sciences, National Snow and Ice Data Center, and Department of Geography, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Alex D. Crawford in
Current site
Google Scholar
PubMed
Close
and
Mark C. Serreze Cooperative Institute for Research in Environmental Sciences, National Snow and Ice Data Center, and Department of Geography, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Mark C. Serreze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0755.s1.

Corresponding author address: Alex D. Crawford, Cooperative Institute for Research in Environmental Sciences, National Snow and Ice Data Center, and Department of Geography, University of Colorado Boulder, Campus Box 449, Boulder, CO 80309-0449. E-mail: alexander.crawford@colorado.edu

Abstract

Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0755.s1.

Corresponding author address: Alex D. Crawford, Cooperative Institute for Research in Environmental Sciences, National Snow and Ice Data Center, and Department of Geography, University of Colorado Boulder, Campus Box 449, Boulder, CO 80309-0449. E-mail: alexander.crawford@colorado.edu

Supplementary Materials

    • Supplemental Materials (DOCX 29.87 MB)
Save
  • Berner, J., and Coauthors, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1042 pp.

  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, doi:10.1002/qj.49712353910.

    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, and M. H. Savoie, 2012: EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geoinf., 1, 3245, doi:10.3390/ijgi1010032.

    • Search Google Scholar
    • Export Citation
  • Crawford, A., and M. Serreze, 2015: A new look at the summer arctic frontal zone. J. Climate, 28, 737754, doi:10.1175/JCLI-D-14-00447.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743881, doi:10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dodds, K., 2010: A polar Mediterranean? Accessibility, resources and sovereignty in the Arctic Ocean. Global Policy, 1, 303311, doi:10.1111/j.1758-5899.2010.00038.x.

    • Search Google Scholar
    • Export Citation
  • Dzerdzeevskii, B. L., 1945: Tsirkuliatsionnye skhemy v troposfere Tsentral’ noi Arktiki. Izdatel'stvo Akademii Nauk, 28 pp.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1A, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Farrell, B., 1985: Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 27182727, doi:10.1175/1520-0469(1985)042<2718:TGODBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., O. Zolina, and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809, doi:10.1007/s003820000145.

    • Search Google Scholar
    • Export Citation
  • Hanley, J., and R. Caballero, 2012: Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis dataset. Quart. J. Roy. Meteor. Soc., 138, 612625, doi:10.1002/qj.948.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, L. Bai, C. M. Bitz, J. G. Powers, and K. W. Manning, 2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev., 143, 23632385, doi:10.1175/MWR-D-14-00344.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037, doi:10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., 2009: The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. Atmos. Sci. Lett., 10, 267272, doi:10.1002/asl.238.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., and M. E. Hori, 2011: Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett., 38, L12502, doi:10.1029/2011GL047696.

    • Search Google Scholar
    • Export Citation
  • König, W., R. Sausen, and F. Sielmann, 1993: Objective identification of cyclones in GCM simulations. J. Climate, 6, 22172231, doi:10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ledrew, E. F., 1984: The role of local heat sources in synoptic activity within the polar basin. Atmos.–Ocean, 22, 309327, doi:10.1080/07055900.1984.9649201.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., and I. Simmonds, 2002: Explosive cyclone development in the Southern Hemisphere and a comparison with Northern Hemisphere events. Mon. Wea. Rev., 130, 21882209, doi:10.1175/1520-0493(2002)130<2188:ECDITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesquita, M. D. S., N. G. Kvamstø, A. Sorteberg, and D. E. Atkinson, 2008: Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere. Tellus, 60A, 557569, doi:10.1111/j.1600-0870.2008.00305.x.

    • Search Google Scholar
    • Export Citation
  • Mesquita, M. D. S., D. E. Atkinson, I. Simmonds, K. Keay, and J. Gottschalck, 2009: New perspectives on the synoptic development of the severe October 1992 Nome storm. Geophys. Res. Lett., 36, L13808, doi:10.1029/2009GL038824.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centres from digital data. Aust. Meteor. Mag., 39, 155166.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., K. Yamazaki, and Y. Tachibana, 2004: The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J. Geophys. Res., 109, D20114, doi:10.1029/2004JD004514.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., J. A. P. Veiga, I. Simmonds, K. Keay, and M. S. Mesquita, 2010: Environmental energetics of an exceptional high-latitude storm. Atmos. Sci. Lett., 11, 3945, doi:10.1002/asl.253.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and K. L. Swanson, 1995: Baroclinic instability. Annu. Rev. Fluid Mech., 27, 419467, doi:10.1146/annurev.fl.27.010195.002223.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14, 823838, doi:10.1127/0941-2948/2005/0068.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., P. M. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, doi:10.1175/2007MWR2143.1.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and B. A. Kunkel, 1960: The arctic circulation in summer. J. Meteor., 17, 489506, doi:10.1175/1520-0469(1960)017<0489:TACIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1989: On the statistical analysis of cyclone deepening rates. Mon. Wea. Rev., 117, 22932298, doi:10.1175/1520-0493(1989)117<2293:OTSAOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., S. K. Gulev, I. Simmonds, and N. Tilinina, 2014: The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms. Tellus, 66A, 24961, doi:10.3402/tellusa.v66.24961.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 123, doi:10.1080/07055900.1995.9649522.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, doi:10.1175/2007JCLI1810.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. D. Kahl, and R. C. Schnell, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629, doi:10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. E. Box, R. G. Barry, and J. E. Walsh, 1993: Characteristics of arctic synoptic activity, 1952–1989. Meteor. Atmos. Phys., 51, 147164, doi:10.1007/BF01030491.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, doi:10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. H. Lynch, and M. P. Clark, 2001: The arctic frontal zone as seen in the NCEP–NCAR reanalysis. J. Climate, 14, 15501567, doi:10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007: The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and J. J. Cassano, 2011: Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res., 116, D07104, doi:10.1029/2010JD015127.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2009: Extraordinary September arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E.-P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, L01707, doi:10.1029/2008GL036320.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, doi:10.1029/2012GL054259.

  • Simmonds, I., and I. Rudeva, 2014: A comparison of tracking methods for extreme cyclones in the Arctic basin. Tellus, 66A, 25252, doi:10.3402/tellusa.v66.25252.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, doi:10.1175/2008JCLI2366.1.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1994: An objective cyclone climatology for the Southern Hemisphere. Mon. Wea. Rev., 122, 22392256, doi:10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595612, doi:10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784, doi:10.1175/JCLI3885.1.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, doi:10.1111/j.1600-0870.2008.00314.x.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., A. Yamagami, and S. Takahashi, 2012: The structure and behavior of the arctic cyclone in summer analyzed by the JRA-25/JCDAS data. Polar Sci., 6, 5569, doi:10.1016/j.polar.2012.03.001.

    • Search Google Scholar
    • Export Citation
  • Tilinina, N., S. K. Gulev, and I. Rudeva, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, doi:10.1175/JCLI-D-12-00777.1.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127143, doi:10.1007/s00382-005-0065-9.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 16851696, doi:10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vavrus, S. J., 2013: Extreme arctic cyclones in CMIP5 historical simulations. Geophys. Res. Lett., 40, 62086212, doi:10.1002/2013GL058161.

    • Search Google Scholar
    • Export Citation
  • Walter, K., and H.-F. Graf, 2005: The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmos. Chem. Phys., 5, 239248, doi:10.5194/acp-5-239-2005.

    • Search Google Scholar
    • Export Citation
  • Welsh, J. P., R. D. Ketchum Jr., A. W. Lohanick, D. T. Eppler, L. D. Farmer, R. E. Burge, and C. A. Radl, 1986: A Compendium of Arctic Environmental Information. National Space Technology Laboratory, 142 pp.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, doi:10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
  • Whittaker, L. M., and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol., 4, 297310, doi:10.1002/joc.3370040307.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, doi:10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2002: Improving the accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130, 748759, doi:10.1175/1520-0493(2002)130<0748:ITAOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1551 627 45
PDF Downloads 1112 322 29