Energetic Constraints on the Width of the Intertropical Convergence Zone

Michael P. Byrne ETH Zürich, Zürich, Switzerland

Search for other papers by Michael P. Byrne in
Current site
Google Scholar
PubMed
Close
and
Tapio Schneider ETH Zürich, Zürich, Switzerland, and California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The intertropical convergence zone (ITCZ) has been the focus of considerable research in recent years, with much of this work concerned with how the latitude of maximum tropical precipitation responds to natural climate variability and to radiative forcing. The width of the ITCZ, however, has received little attention despite its importance for regional climate and for understanding the general circulation of the atmosphere. This paper investigates the ITCZ width in simulations with an idealized general circulation model over a wide range of climates. The ITCZ, defined as the tropical region where there is time-mean ascent, displays rich behavior as the climate varies, widening with warming in cool climates, narrowing in temperate climates, and maintaining a relatively constant width in hot climates. The mass and energy budgets of the Hadley circulation are used to derive expressions for the area of the ITCZ relative to the area of the neighboring descent region, and for the sensitivity of the ITCZ area to changes in climate. The ITCZ width depends primarily on four quantities: the net energy input to the tropical atmosphere, the advection of moist static energy by the Hadley circulation, the transport of moist static energy by transient eddies, and the gross moist stability. Different processes are important for the ITCZ width in different climates, with changes in gross moist stability generally having a weak influence relative to the other processes. The results are likely to be useful for analyzing the ITCZ width in complex climate models and for understanding past and future climate change in the tropics.

Corresponding author address: Michael P. Byrne, Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland. E-mail: michael.byrne@erdw.ethz.ch

Abstract

The intertropical convergence zone (ITCZ) has been the focus of considerable research in recent years, with much of this work concerned with how the latitude of maximum tropical precipitation responds to natural climate variability and to radiative forcing. The width of the ITCZ, however, has received little attention despite its importance for regional climate and for understanding the general circulation of the atmosphere. This paper investigates the ITCZ width in simulations with an idealized general circulation model over a wide range of climates. The ITCZ, defined as the tropical region where there is time-mean ascent, displays rich behavior as the climate varies, widening with warming in cool climates, narrowing in temperate climates, and maintaining a relatively constant width in hot climates. The mass and energy budgets of the Hadley circulation are used to derive expressions for the area of the ITCZ relative to the area of the neighboring descent region, and for the sensitivity of the ITCZ area to changes in climate. The ITCZ width depends primarily on four quantities: the net energy input to the tropical atmosphere, the advection of moist static energy by the Hadley circulation, the transport of moist static energy by transient eddies, and the gross moist stability. Different processes are important for the ITCZ width in different climates, with changes in gross moist stability generally having a weak influence relative to the other processes. The results are likely to be useful for analyzing the ITCZ width in complex climate models and for understanding past and future climate change in the tropics.

Corresponding author address: Michael P. Byrne, Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland. E-mail: michael.byrne@erdw.ethz.ch
Save
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, doi:10.1175/JCLI-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, doi:10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, doi:10.1175/JCLI-D-13-00650.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 325330.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 29072920, doi:10.1175/1520-0442(2002)015<2907:ASMOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, doi:10.1175/JCLI-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, doi:10.1175/JCLI-D-15-0369.1.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 19822005, doi:10.1175/2008JCLI2471.1.

    • Search Google Scholar
    • Export Citation
  • Couhert, A., T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010: The maintenance of the relative humidity of the subtropical free troposphere. J. Climate, 23, 390403, doi:10.1175/2009JCLI2952.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and O. Pauluis, 2011: Modulations of the phase speed of convectively coupled Kelvin waves by the ITCZ. J. Atmos. Sci., 68, 14461459, doi:10.1175/2011JAS3630.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, doi:10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., 1972: Fluctuations in the position of the ITCZ in the Atlantic and Pacific Oceans. J. Atmos. Sci., 29, 193197, doi:10.1175/1520-0469(1972)029<0193:FITPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., and D. L. Hartmann, 2016: The role of cloud radiative heating in determining the location of the ITCZ in aquaplanet simulations. J. Climate, 29, 27412763, doi:10.1175/JCLI-D-15-0521.1.

    • Search Google Scholar
    • Export Citation
  • Haug, G. H., K. A. Hughen, D. M. Sigman, L. C. Peterson, and U. Röhl, 2001: Southward migration of the intertropical convergence zone through the Holocene. Science, 293, 13041308, doi:10.1126/science.1059725.

    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, doi:10.1175/JCLI-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2008: Extent of Hadley circulations in dry atmospheres. Geophys. Res. Lett., 35, L23803, doi:10.1029/2008GL035847.

    • Search Google Scholar
    • Export Citation
  • Landu, K., L. R. Leung, S. Hagos, V. Vinoj, S. A. Rauscher, T. Ringler, and M. Taylor, 2014: The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations. J. Climate, 27, 23752385, doi:10.1175/JCLI-D-13-00269.1.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, doi:10.1073/pnas.1418682112.

    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, doi:10.1175/JAS-D-14-0152.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 13171325, doi:10.1175/BAMS-D-11-00152.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, doi:10.1175/2011JCLI4042.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., S. W. Powell, C. Zhang, and B. E. Mapes, 2010: Idealized simulations of the intertropical convergence zone and its multilevel flows. J. Atmos. Sci., 67, 40284053, doi:10.1175/2010JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, doi:10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1984: Physics of climate. Rev. Mod. Phys., 56, 365429, doi:10.1103/RevModPhys.56.365.

  • Peters, M. E., Z. Kuang, and C. C. Walker, 2008: Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Climate, 21, 52295241, doi:10.1175/2008JCLI2073.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N. C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 29582972, doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933, doi:10.1175/JCLI3931.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and Z. Kuang, 2016: Exploring the role of eddy momentum fluxes in determining the characteristics of the equinoctial Hadley circulation: Fixed-SST simulations. J. Atmos. Sci., doi:10.1175/JAS-D-15-0212.1, in press.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2003: On the coexistence of an evaporation minimum and precipitation maximum in the warm pool. J. Climate, 16, 10031009, doi:10.1175/1520-0442(2003)016<1003:OTCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20, 323350, doi:10.1007/s00162-006-0033-y.

    • Search Google Scholar
    • Export Citation
  • Tian, B., 2015: Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias. Geophys. Res. Lett., 42, 41334141, doi:10.1002/2015GL064119.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, doi:10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, doi:10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Williams, P. D., 2011: The RAW filter: An improvement to the Robert–Asselin filter in semi-implicit integrations. Mon. Wea. Rev., 139, 19962007, doi:10.1175/2010MWR3601.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1053 383 32
PDF Downloads 979 337 28