Response of the Superparameterized Madden–Julian Oscillation to Extreme Climate and Basic-State Variation Challenges a Moisture Mode View

Michael S. Pritchard Department of Earth System Sciences, University of California, Irvine, Irvine, California

Search for other papers by Michael S. Pritchard in
Current site
Google Scholar
PubMed
Close
and
Da Yang Department of Earth and Planetary Science, and Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California

Search for other papers by Da Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climate sensitivity of the Madden–Julian oscillation (MJO) is measured across a broad range of temperatures (1°–35°C) using a convection-permitting global climate model with homogenous sea surface temperatures. An MJO-like signal is found to be resilient in all simulations. These results are used to investigate two ideas related to the modern “moisture mode” view of MJO dynamics. The first hypothesis is that the MJO has dynamics analogous to a form of radiative convective self-aggregation in which longwave energy maintenance mechanisms shut down for SST ≪ 25°C. Inconsistent with this hypothesis, the explicitly simulated MJO survives cooling and retains leading moist static energy (MSE) budget terms associated with longwave destabilization even at SST < 10°C. Thus, if the MJO is a form of longwave-assisted self-aggregation, it is not one that is temperature critical, as is observed in some cases of radiative–convective equilibrium (RCE) self-aggregation. The second hypothesis is that the MJO is propagated by horizontal advection of column MSE. Inconsistent with this view, the simulated MJO survives reversal of meridional moisture gradients in the basic state and a striking role for horizontal MSE advection in its propagation energy budget cannot be detected. Rather, its eastward motion is balanced by vertical MSE advection reminiscent of gravity or Kelvin wave dynamics. These findings could suggest a tight relation between the MJO and classic equatorial waves, which would tend to challenge moisture mode views of MJO dynamics that assume horizontal moisture advection as the MJO’s propagator. The simulation suite provides new opportunities for testing predictions from MJO theory across a broad climate regime.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0790.s1.

Publisher’s Note: This article was revised on 28 June 2016 to fix a typographical error in the title.

Corresponding author address: Michael S. Pritchard, Assistant Professor, Department of Earth System Sciences, University of California, Irvine, 3200 Croul Hall, Irvine, CA 92697-3100. E-mail: mspritch@uci.edu

Abstract

The climate sensitivity of the Madden–Julian oscillation (MJO) is measured across a broad range of temperatures (1°–35°C) using a convection-permitting global climate model with homogenous sea surface temperatures. An MJO-like signal is found to be resilient in all simulations. These results are used to investigate two ideas related to the modern “moisture mode” view of MJO dynamics. The first hypothesis is that the MJO has dynamics analogous to a form of radiative convective self-aggregation in which longwave energy maintenance mechanisms shut down for SST ≪ 25°C. Inconsistent with this hypothesis, the explicitly simulated MJO survives cooling and retains leading moist static energy (MSE) budget terms associated with longwave destabilization even at SST < 10°C. Thus, if the MJO is a form of longwave-assisted self-aggregation, it is not one that is temperature critical, as is observed in some cases of radiative–convective equilibrium (RCE) self-aggregation. The second hypothesis is that the MJO is propagated by horizontal advection of column MSE. Inconsistent with this view, the simulated MJO survives reversal of meridional moisture gradients in the basic state and a striking role for horizontal MSE advection in its propagation energy budget cannot be detected. Rather, its eastward motion is balanced by vertical MSE advection reminiscent of gravity or Kelvin wave dynamics. These findings could suggest a tight relation between the MJO and classic equatorial waves, which would tend to challenge moisture mode views of MJO dynamics that assume horizontal moisture advection as the MJO’s propagator. The simulation suite provides new opportunities for testing predictions from MJO theory across a broad climate regime.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0790.s1.

Publisher’s Note: This article was revised on 28 June 2016 to fix a typographical error in the title.

Corresponding author address: Michael S. Pritchard, Assistant Professor, Department of Earth System Sciences, University of California, Irvine, 3200 Croul Hall, Irvine, CA 92697-3100. E-mail: mspritch@uci.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.61 MB)
Save
  • Abbot, D. S., 2014: Resolved snowball earth clouds. J. Climate, 27, 43914402, doi:10.1175/JCLI-D-13-00738.1.

  • Andersen, J. A., 2012: Investigations of the convectively coupled equatorial waves and the Madden–Julian oscillation. Ph.D. dissertation, Department of Physics, Harvard University, 270 pp.

  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, doi:10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the Superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2011: Impacts of idealized air–sea coupling on Madden–Julian oscillation structure in the Superparameterized CAM. J. Atmos. Sci., 68, 19902008, doi:10.1175/JAS-D-11-04.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 2000: Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. J. Atmos. Sci., 57, 641652, doi:10.1175/1520-0469(2000)057<0641:MQEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447459, doi:10.1007/s00382-003-0387-4.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative–convective instability. J. Adv. Model. Earth Syst., 6, 7590, doi:10.1002/2013MS000270.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, doi:10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: A Cloud Resolving Convective Parameterization for modeling the tropical convective atmosphere. Physica D, 133, 171178, doi:10.1016/S0167-2789(99)00104-9.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aqua-planet general circulation model. J. Climate, 27, 87478760, doi:10.1175/JCLI-D-14-00148.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C. R., C. S. Bretherton, and M. S. Pritchard, 2015: Mean-state acceleration of cloud-resolving models and large eddy simulations. J. Adv. Model. Earth Syst., 7, 16431660, doi:10.1002/2015MS000488.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2010: Aggregated convection and the regulation of tropical climate. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., P2.69. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_168418.htm.]

  • Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154, doi:10.1175/JAS3453.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Climate, 21, 413431, doi:10.1175/2007JCLI1630.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, doi:10.1175/JCLI-D-14-00767.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and E. K. Schneider, 2000: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci., 57, 20802093, doi:10.1175/1520-0469(2000)057<2080:ASGTAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landu, K., and E. D. Maloney, 2011: Effect of SST distribution and radiative feedbacks on the simulation of intraseasonal variability in an aquaplanet GCM. J. Meteor. Soc. Japan, 89, 195210, doi:10.2151/jmsj.2011-302.

    • Search Google Scholar
    • Export Citation
  • Ma, D., and Z. Kuang, 2011: Modulation of radiative heating by the Madden–Julian oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophys. Res. Lett., 38, L21813, doi:10.1029/2011GL049734.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2 (5), doi:10.3894/JAMES.2010.2.5.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., C. S. Bretherton, and C. A. DeMott, 2014: Restricting 32–128 km horizontal scales hardly affects the MJO in the Superparameterized Community Atmosphere Model v.3.0 but the number of cloud-resolving grid columns constrains vertical mixing. J. Adv. Model. Earth Syst., 6, 723739, doi:10.1002/2014MS000340.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471562, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1 (9), doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sumi, A., 1992: Pattern formation of convective activity over the aqua-planet with globally uniform sea surface temperature (SST). J. Meteor. Soc. Japan, 70, 855876.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, doi:10.1002/qj.2628.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, doi:10.1175/JAS-D-12-0255.1.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2014: A theory of the MJO horizontal scale. Geophys. Res. Lett., 41, 10591064, doi:10.1002/2013GL058542.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752, doi:10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 593 189 11
PDF Downloads 362 79 5