• Baldwin, H. I., 1942: Forestry in New England. National Resources Planning Board Region 1 Publ. 70, 57 pp.

  • Barnes, C. A., , and D. P. Roy, 2008: Radiative forcing over the conterminous United States due to contemporary land cover land use albedo change. Geophys. Res. Lett., 35, L09706, doi:10.1029/2008GL033567.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28 90128 909, doi:10.1029/96JD03876.

  • Betts, R. A., 2001: Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett., 2, 3951.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., , P. D. Falloon, , K. K. Goldewijk, , and N. Ramankutty, 2007: Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agric. For. Meteor., 142, 216233, doi:10.1016/j.agrformet.2006.08.021.

    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., and Coauthors, 2012: Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. J. Geophys. Res., 117, D12116, doi:10.1029/2011JD017106.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Burakowski, E. A., , C. P. Wake, , J. E. Dibb, , and M. Stampone, 2013: Putting the capital ‘A’ in CoCoRAHS: An experimental program to measure albedo using the Community Collaborative Rain, Hail & Snow (CoCoRaHS) Network. Hydrol. Processes, 27, 30243034, doi:10.1002/hyp.9825.

    • Search Google Scholar
    • Export Citation
  • Burakowski, E. A., and Coauthors, 2015: Spatial scaling of reflectance and surface albedo over a mixed-use, temperate forest landscape during snow-covered periods. Remote Sens. Environ., 158, 465477, doi:10.1016/j.rse.2014.11.023.

    • Search Google Scholar
    • Export Citation
  • Carroll, T., , D. Cline, , G. Fall, , A. Nilsson, , L. Li, , and A. Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the conterminous U.S. Proc. 69th Western Snow Conf., Sun Valley, ID, WSC, 14 pp. [Available online at http://www.westernsnowconference.org/sites/westernsnowconference.org/PDFs/2001Carroll.pdf.]

  • Chen, F., , C. Liu, , J. Dudhia, , and M. Chen, 2014: A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. J. Geophys. Res., 119, 72717291, doi:10.1002/2014JD021827.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo TM-104606, Vol. 3, 85 pp.

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , M. Halbleib, , J. I. Smith, , W. P. Gibson, , M. K. Doggett, , G. H. Taylor, , J. Curtis, , and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Davin, E. L., , and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Climate, 23, 97112, doi:10.1175/2009JCLI3102.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348, doi:10.1023/A:1000132524077.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., , P. Bartlett, , and J. H. McCaughey, 2002: Study of “soft” night-time surface-layer decoupling over forest canopies in a land surface model. Bound.-Layer Meteor., 103, 253276, doi:10.1023/A:1017443021557.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., and Coauthors, 2012: Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate, 25, 32613281, doi:10.1175/JCLI-D-11-00338.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999: Boundary-layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90, 297325, doi:10.1023/A:1001710014316.

    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., , G. L. Johnson, , C. Daly, , J. K. Eischeid, , and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, doi:10.1175/2007JAMC1356.1.

    • Search Google Scholar
    • Export Citation
  • Feddema, J., , K. Oleson, , G. Bonan, , L. Mearns, , W. Washington, , G. Meehl, , and D. Nychka, 2005: A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Climate Dyn., 25, 581609, doi:10.1007/s00382-005-0038-z.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., , and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., , and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi:10.1029/2005JD006834.

    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., , C. S. Zender, , J. T. Randerson, , and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.

    • Search Google Scholar
    • Export Citation
  • Foster, D. R., , and J. Aber, Eds., 2004: Forests in Time: The Environmental Consequences of 1,000 years of Change in New England. Yale University Press, 496 pp.

  • Foster, D. R., , B. Donahue, , D. B. Kittredge, , G. Motzkin, , B. Hall, , B. L. Turner, , and E. Chilton, 2008: New England’s forest landscape: Ecological legacies and conservation patterns shaped by agrarian history. Agrarian Landscapes in Transition, C. L. Redman and D. R. Foster, Eds., Oxford University Press, 44–88.

  • Foster, D. R., and Coauthors, 2010: Wildlands and Woodlands: A Vision for the New England Landscape. Harvard University Press, 36 pp.

  • Friedl, M. A., , D. Sulla-Menashe, , B. Tan, , A. Schneider, , N. Ramankutty, , A. Sibley, , and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, doi:10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Harper, R. M., 1918: Changes in forest area in New England in three centuries. J. For., 16, 442452.

  • Hodgkins, G. A., , I. C. James II, , and T. G. Huntington, 2002: Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int. J. Climatol., 22, 18191827, doi:10.1002/joc.857.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

  • Jin, J., , N. L. Miller, , and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Adv. Meteor., 167436, doi:10.1155/2010/167436.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., , C. B. Schaaf, , F. Gao, , X. Li, , A. Strahler, , X. Zeng, , and R. E. Dickinson, 2002: How does snow impact the albedo of vegetated surfaces as analyzed with MODIS data? Geophys. Res. Lett., 29, 1374, doi:10.1029/2001GL014132.

    • Search Google Scholar
    • Export Citation
  • Klein Goldewijk, K., , A. Beusen, , G. van Drecht, , and M. de Vos, 2011: The HYDE 3.1 spatially explicit database of human-induced global land use change over the past 12,000 years. Global Ecol. Biogeogr., 20, 7386, doi:10.1111/j.1466-8238.2010.00587.x.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., , J. Butke, , D. J. Leathers, , K. R. Brinson, , and E. Nickl, 2008: Mesoscale simulations of the land surface effects of historical logging in a moist continental climate regime. J. Appl. Meteor. Climatol., 47, 21662182, doi:10.1175/2008JAMC1765.1.

    • Search Google Scholar
    • Export Citation
  • Kvalevåg, M. M., , G. Myhre, , G. Bonan, , and S. Levis, 2010: Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data. Int. J. Climatol., 30, 21052117, doi:10.1002/joc.2012.

    • Search Google Scholar
    • Export Citation
  • Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384387, doi:10.1038/nature10588.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and Coauthors, 2009: Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle. J. Geophys. Res., 114, D01106, doi:10.1029/2008JD009969.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., , and L. M. Kueppers, 2012: Surface energy partitioning over four dominant vegetation types across the United States in a coupled regional climate model (Weather Research and Forecasting Model 3–Community Land Model 3.5). J. Geophys. Res., 117, D06111, doi:10.1029/2011JD016991.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., , J. Jin, , and L. M. Kueppers, 2015: Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop). Climate Dyn., 45, 33473363, doi:10.1007/s00382-015-2543-z.

    • Search Google Scholar
    • Export Citation
  • Luyssaert, S., and Coauthors, 2014: Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Climate Change, 4, 389393, doi:10.1038/nclimate2196.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., , S. Taubman, , P. Brown, , M. Iacono, , and S. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., , M. D. King, , C. B. Schaaf, , D. K. Hall, , and S. Platnick, 2007: Northern Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sens. Environ., 111, 337345, doi:10.1016/j.rse.2007.03.026.

    • Search Google Scholar
    • Export Citation
  • Mooney, P. A., , F. J. Mulligan, , and R. Fealy, 2013: Evaluation of the sensitivity of the Weather Research and Forecasting Model to parameterization schemes for regional climates of Europe over the period 1990–1995. J. Climate, 26, 10021017, doi:10.1175/JCLI-D-11-00676.1.

    • Search Google Scholar
    • Export Citation
  • National Operational Hydrologic Remote Sensing Center, 2004: Snow Data Assimilation System (SNODAS) data products at the NSIDC. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/G02158.]

  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., , G. B. Bonan, , S. Levis, , and M. Vertenstein, 2004: Effects of land use change on North American climate: Impact of surface datasets and model biogeophysics. Climate Dyn., 23, 117132, doi:10.1007/s00382-004-0426-9.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp.

  • Oliver, S. A., , H. R. Oliver, , J. S. Wallace, , and A. M. Roberts, 1987: Soil heat flux and temperature variation with vegetation, soil type and climate. Agric. For. Meteor., 39, 257269, doi:10.1016/0168-1923(87)90042-6.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, doi:10.1175/2010JCLI3985.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. R., , and G. Kukla, 1984: Albedo of a dissipating snow cover. J. Climate Appl. Meteor., 23, 16261634, doi:10.1175/1520-0450(1984)023<1626:AOADSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. R., , and G. Kukla, 1985: Anthropogenic increase of winter surface albedo. Catena, 12, 215225, doi:10.1016/S0341-8162(85)80020-5.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148, doi:10.1016/S0034-4257(02)00091-3.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Sterk, H. A. M., , C. J. Steeneveld, , and A. A. M. Holtslag, 2013: The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J. Geophys. Res. Atmos., 118, 11991217, doi:10.1002/jgrd.50158.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., , W. J. Riley, , J. Jin, , D. S. Christianson, , M. S. Torn, , and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interact., 15, doi:10.1175/2010EI331.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Thackeray, C. W., , C. G. Fletcher, , and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res., 119, 98109821, doi:10.1002/2014JD021858.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., , C. P. McKay, , T. P. Ackerman, , and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94 (D13), 16 28716 301, doi:10.1029/JD094iD13p16287.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133, doi:10.1002/joc.3370110202.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2014: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ., 140, 6077, doi:10.1016/j.rse.2013.08.025.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods of observation. World Meteorological Organization Publ. 8, 7th ed., 681 pp.

  • Yang, Z.-L., , R. E. Dickinson, , A. Robock, , and K. Y. Vinnikov, 1997: Validation of the snow sub-model of the Biosphere–Atmosphere Transfer Scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353373, doi:10.1175/1520-0442(1997)010<0353:VOTSSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, doi:10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , and R. B. Jackson, 2014: Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr., 84, 329353, doi:10.1890/12-1705.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11 47511 491, doi:10.5194/acp-14-11475-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 355 18
PDF Downloads 99 99 10

Evaluating the Climate Effects of Reforestation in New England Using a Weather Research and Forecasting (WRF) Model Multiphysics Ensemble

View More View Less
  • 1 Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, and National Center for Atmospheric Research,* Boulder, Colorado
  • 2 Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire
  • 3 National Center for Atmospheric Research,* Boulder, Colorado
  • 4 Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire
  • 5 USDA Forest Service Northern Research Station, Durham, New Hampshire
© Get Permissions
Restricted access

Abstract

The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This study investigated wintertime (December through March) climate impacts of reforestation in New England using a high-resolution (4 km) multiphysics ensemble of the Weather Research and Forecasting Model. In general, the conversion from mid-1800s cropland/grassland to forest led to warming, but results were sensitive to physics parameterizations. The 2-m maximum temperature (T2max) was most sensitive to choice of land surface model, 2-m minimum temperature (T2min) was sensitive to radiation scheme, and all ensemble members simulated precipitation poorly. Reforestation experiments suggest that conversion of mid-1800s cropland/grassland to present-day forest warmed T2max +0.5 to +3 K, with weaker warming during a warm, dry winter compared to a cold, snowy winter. Warmer T2max over forests was primarily the result of increased absorbed shortwave radiation and increased sensible heat flux compared to cropland/grassland. At night, T2min warmed +0.2 to +1.5 K where deciduous broadleaf forest replaced cropland/grassland, a result of decreased ground heat flux. By contrast, T2min of evergreen needleleaf forest cooled –0.5 to –2.1 K, primarily owing to increased ground heat flux and decreased sensible heat flux.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/JCLI-D-15-0286.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: E. A. Burakowski, National Center for Atmospheric Research, Climate and Global Dynamics Division, 1850 Table Mesa Dr., ML 174b, Boulder, CO 80305. E-mail: burakows@ucar.edu

Abstract

The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This study investigated wintertime (December through March) climate impacts of reforestation in New England using a high-resolution (4 km) multiphysics ensemble of the Weather Research and Forecasting Model. In general, the conversion from mid-1800s cropland/grassland to forest led to warming, but results were sensitive to physics parameterizations. The 2-m maximum temperature (T2max) was most sensitive to choice of land surface model, 2-m minimum temperature (T2min) was sensitive to radiation scheme, and all ensemble members simulated precipitation poorly. Reforestation experiments suggest that conversion of mid-1800s cropland/grassland to present-day forest warmed T2max +0.5 to +3 K, with weaker warming during a warm, dry winter compared to a cold, snowy winter. Warmer T2max over forests was primarily the result of increased absorbed shortwave radiation and increased sensible heat flux compared to cropland/grassland. At night, T2min warmed +0.2 to +1.5 K where deciduous broadleaf forest replaced cropland/grassland, a result of decreased ground heat flux. By contrast, T2min of evergreen needleleaf forest cooled –0.5 to –2.1 K, primarily owing to increased ground heat flux and decreased sensible heat flux.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/JCLI-D-15-0286.s1.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: E. A. Burakowski, National Center for Atmospheric Research, Climate and Global Dynamics Division, 1850 Table Mesa Dr., ML 174b, Boulder, CO 80305. E-mail: burakows@ucar.edu

Supplementary Materials

    • Supplemental Materials (DOCX 4.87 MB)
Save