Atmospheric Moisture Transport to the Arctic: Assessment of Reanalyses and Analysis of Transport Components

Ambroise Dufour LGGE, CNRS/UJF, Grenoble, France

Search for other papers by Ambroise Dufour in
Current site
Google Scholar
PubMed
Close
,
Olga Zolina LGGE, CNRS/UJF, Grenoble, France, and P. P. Shirshov Institute of Oceanology, Moscow, Russia

Search for other papers by Olga Zolina in
Current site
Google Scholar
PubMed
Close
, and
Sergey K. Gulev P. P. Shirshov Institute of Oceanology, Moscow, Russia

Search for other papers by Sergey K. Gulev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric water cycle of the Arctic is evaluated via seven global reanalyses and in radiosonde observations covering the 1979–2013 period. In the regional moisture budget, evaporation and precipitation are the least consistent terms among different datasets. Despite the assimilation of radiosoundings, the reanalyses present a tendency to overestimate the moisture transport. Aside from this overestimation, the reanalyses exhibit a remarkable agreement with the radiosondes in terms of spatial and temporal patterns. The northern North Atlantic, subpolar North Pacific, and Labrador Sea stand out as the main gateways for moisture to the Arctic in all reanalyses. Because these regions correspond to the end of the storm tracks, the link between moisture transports and extratropical cyclones is further investigated by decomposing the moisture fluxes in the mean flow and transient eddy parts. In all reanalyses, the former term tends to cancel out when averaged over a latitude circle, leaving the latter to provide the bulk of the midlatitude moisture imports (89%–94% at 70°N). Although the Arctic warms faster than the rest of the world, the impact of these changes on its water cycle remains ambiguous. In most datasets, evaporation, precipitation, and precipitable water increase in line with what is expected from a warming signal. At the same time, the moisture transports have decreased in all the reanalyses but not in the radiosonde observations, though none of these trends is statistically significant. The fluxes do not scale with the Clausius–Clapeyron relation because the increasing humidity is not correlated with the meridional wind, particularly near the surface.

Corresponding author address: Ambroise Dufour, Laboratoire de Glaciologie et Géophysique de l’Environnement, 54 rue Molière, BP 96, F-38402 Saint-Martin d’Hères CEDEX, France. E-mail: ambroise.dufour@gmail.com

Abstract

The atmospheric water cycle of the Arctic is evaluated via seven global reanalyses and in radiosonde observations covering the 1979–2013 period. In the regional moisture budget, evaporation and precipitation are the least consistent terms among different datasets. Despite the assimilation of radiosoundings, the reanalyses present a tendency to overestimate the moisture transport. Aside from this overestimation, the reanalyses exhibit a remarkable agreement with the radiosondes in terms of spatial and temporal patterns. The northern North Atlantic, subpolar North Pacific, and Labrador Sea stand out as the main gateways for moisture to the Arctic in all reanalyses. Because these regions correspond to the end of the storm tracks, the link between moisture transports and extratropical cyclones is further investigated by decomposing the moisture fluxes in the mean flow and transient eddy parts. In all reanalyses, the former term tends to cancel out when averaged over a latitude circle, leaving the latter to provide the bulk of the midlatitude moisture imports (89%–94% at 70°N). Although the Arctic warms faster than the rest of the world, the impact of these changes on its water cycle remains ambiguous. In most datasets, evaporation, precipitation, and precipitable water increase in line with what is expected from a warming signal. At the same time, the moisture transports have decreased in all the reanalyses but not in the radiosonde observations, though none of these trends is statistically significant. The fluxes do not scale with the Clausius–Clapeyron relation because the increasing humidity is not correlated with the meridional wind, particularly near the surface.

Corresponding author address: Ambroise Dufour, Laboratoire de Glaciologie et Géophysique de l’Environnement, 54 rue Molière, BP 96, F-38402 Saint-Martin d’Hères CEDEX, France. E-mail: ambroise.dufour@gmail.com
Save
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004a: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., V. A. Semenov, and O. M. Johannessen, 2004b: The early twentieth-century warming in the Arctic—A possible mechanism. J. Climate, 17, 40454057, doi:10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, S. Koumoutsaris, M. Zahn, and N. Keenlyside, 2011: The changing atmospheric water cycle in polar regions in a warmer climate. Tellus, 63A, 907920, doi:10.1111/j.1600-0870.2011.00534.x.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. Selten, 2014: Future increases in arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, doi:10.1038/nature13259.

    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., T. Markus, and T. Vihma, 2013: Moisture flux changes and trends for the entire Arctic in 2003–2011 derived from EOS Aqua data. J. Geophys. Res. Oceans, 118, 58295843, doi:10.1002/jgrc.20414.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., and Coauthors, 2006: NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA). U.S. CLIVAR Variations, No. 4, 5–8.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D., R. Cullather, and M. Serreze, 2000: Reanalyses’ depictions of the Arctic atmospheric moisture budget. The Freshwater Budget of the Arctic Ocean, Springer, 163–196.

  • Bromwich, D., A. B. Wilson, L.-S. Bai, G. W. K. Moore, and P. Bauer, 2015: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim reanalysis for the Arctic. Quart. J. Roy. Meteor. Soc., 142, 644658, doi:10.1002/qj.2527.

    • Search Google Scholar
    • Export Citation
  • Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith, 2010: A spatially calibrated model of annual accumulation rate on the Greenland ice sheet (1958–2007). J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136. [Available online at http://www.climatechange2013.org/images/report/WG1AR5_Chapter12_FINAL.pdf.]

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, doi:10.1175/2010JCLI4090.1.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate, 13, 923937, doi:10.1175/1520-0442(2000)013<0923:TAHCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, doi:10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., 2002: Validation of reanalysis upper-level winds in the Arctic with independent rawinsonde data. Geophys. Res. Lett., 29, 1315, doi:10.1029/2001GL014578.

    • Search Google Scholar
    • Export Citation
  • Grant, A., S. Brönnimann, and L. Haimberger, 2008: Recent arctic warming vertical structure contested. Nature, 455, E2E3, doi:10.1038/nature07257.

    • Search Google Scholar
    • Export Citation
  • Groves, D. G., and J. A. Francis, 2002: Moisture budget of the arctic atmosphere from TOVS satellite data. J. Geophys. Res., 107, 4391, doi:10.1029/2001JD001191.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, doi:10.1002/qj.2528.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., J. Finnis, A. P. Barrett, and M. C. Serreze, 2007: Projected changes in Arctic Ocean freshwater budgets. J. Geophys. Res., 112, G04S55, doi:10.1029/2006JG000354.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. M. Frierson, and J. E. Kay, 2011: Coupling between arctic feedbacks and changes in poleward energy transport. Geophys. Res. Lett., 38, L17704, doi:10.1029/2011GL048546.

    • Search Google Scholar
    • Export Citation
  • Jakobson, E., and T. Vihma, 2010: Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol., 30, 21752194, doi:10.1002/joc.2039.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., and J. E. Walsh, 2000: Twentieth-century trends of arctic precipitation from observational data and a climate model simulation. J. Climate, 13, 13621370, doi:10.1175/1520-0442(2000)013<1362:TCTOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., J. E. Walsh, W. L. Chapman, V. A. Govorkova, T. V. Pavlova, and X. Zhang, 2007: Simulation and projection of arctic freshwater budget components by the IPCC AR4 global climate models. J. Hydrometeor., 8, 571589, doi:10.1175/JHM575.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., U. Mikolajewicz, H. Haak, and J. Jungclaus, 2007: Arctic freshwater export in the 20th and 21st centuries. J. Geophys. Res., 112, G04S41, doi:10.1029/2006JG000274.

    • Search Google Scholar
    • Export Citation
  • Kopec, B. G., X. Feng, F. A. Michel, and E. S. Posmentier, 2016: Influence of sea ice on arctic precipitation. Proc. Natl. Acad. Sci. USA, 113, 4651, doi:10.1073/pnas.1504633113.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res. Atmos., 120, 37743788, doi:10.1002/2014JD022796.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, doi:10.1175/JCLI-D-11-00665.1.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Oshima, K., and K. Yamazaki, 2006: Difference in seasonal variation of net precipitation between the arctic and Antarctic regions. Geophys. Res. Lett., 33, L18501, doi:10.1029/2006GL027389.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Polyakov, I. V., and Coauthors, 2002: Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett., 29, 1878, doi:10.1029/2001GL011111.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., J. Derber, D. Parrish, R. Treadon, and D. Kleist, 2008: The development of the first-order time extrapolation to the observation (FOTO) method and its application in the NCEP global data assimilation system. 12th Conf. on IOAS-AOLS, New Orleans, LA, Amer. Meteor. Soc., J6.1. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_131816.htm.]

  • Rawlins, M. A., and Coauthors, 2010: Analysis of the arctic system for freshwater cycle intensification: Observations and expectations. J. Climate, 23, 57155737, doi:10.1175/2010JCLI3421.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, doi:10.1175/JCLI-D-13-00018.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., R. G. Barry, and J. E. Walsh, 1995: Atmospheric water vapor characteristics at 70°N. J. Climate, 8, 719731, doi:10.1175/1520-0442(1995)008<0719:AWVCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. Barrett, J. Stroeve, D. Kindig, and M. Holland, 2009: The emergence of surface-based arctic amplification. Cryosphere, 3, 1119, doi:10.5194/tc-3-11-2009.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, doi:10.1111/j.1600-0870.2008.00314.x.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Tilinina, N., S. K. Gulev, I. Rudeva, and P. Koltermann, 2013: Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Climate, 26, 64196438, doi:10.1175/JCLI-D-12-00777.1.

    • Search Google Scholar
    • Export Citation
  • Tilinina, N., S. K. Gulev, and D. H. Bromwich, 2014: New view of arctic cyclone activity from the arctic system reanalysis. Geophys. Res. Lett., 41, 17661772, doi:10.1002/2013GL058924.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, doi:10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., D. N. Kindig, and M. C. Serreze, 2007: Characteristics of winter cyclone activity in the northern North Atlantic: Insights from observations and regional modeling. J. Geophys. Res., 112, D03101, doi:10.1029/2006JD007184.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, doi:10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T., 2011: Early 20th century warming in the Arctic: A review. Polar Sci., 5, 5371, doi:10.1016/j.polar.2010.10.002.

  • Zhang, X., J. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Climate Change, 3, 4751, doi:10.1038/nclimate1631.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1235 387 31
PDF Downloads 1034 324 22