Reconstructed Regional Mean Climate with Bayesian Model Averaging: A Case Study for Temperature Reconstruction in the Yunnan–Guizhou Plateau, China

Xianliang Zhang Tree-Ring Laboratory, College of Forestry, Shenyang Agricultural University, Shenyang, China

Search for other papers by Xianliang Zhang in
Current site
Google Scholar
PubMed
Close
,
Xiaodong Yan State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Xiaodong Yan in
Current site
Google Scholar
PubMed
Close
, and
Zhenju Chen Tree-Ring Laboratory, College of Forestry, Shenyang Agricultural University, and Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, China

Search for other papers by Zhenju Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method was developed, based on Bayesian model averaging (BMA), to reconstruct regional mean temperature. Different from the arithmetic mean, which gives equal weight to each chronology, BMA weights the chronologies according to their contributions to the actual temperature variances. Thus, BMA holds advantages in integrating chronologies to reconstruct the regional mean temperature. The regional mean temperature for the Yunnan–Guizhou Plateau was reconstructed for the past four centuries (1628–2005) using BMA, which performed better than the simple arithmetic mean. The reconstruction explained 41.33% of total observed temperature variances during the period of 1961–2005. The warmest decade was found to be 1840–50 and the coldest 1810–20 prior to the instrumental period. The reconstructed temperature showed a high correlation (r > 0.7, p < 0.001) with gridded observed temperatures in most grid cells of the Yunnan–Guizhou Plateau, suggesting that the regional temperature changes were captured well by the reconstruction.

Corresponding author address: Zhenju Chen, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China. E-mail: zhenjuchen@hotmail.com

Abstract

A method was developed, based on Bayesian model averaging (BMA), to reconstruct regional mean temperature. Different from the arithmetic mean, which gives equal weight to each chronology, BMA weights the chronologies according to their contributions to the actual temperature variances. Thus, BMA holds advantages in integrating chronologies to reconstruct the regional mean temperature. The regional mean temperature for the Yunnan–Guizhou Plateau was reconstructed for the past four centuries (1628–2005) using BMA, which performed better than the simple arithmetic mean. The reconstruction explained 41.33% of total observed temperature variances during the period of 1961–2005. The warmest decade was found to be 1840–50 and the coldest 1810–20 prior to the instrumental period. The reconstructed temperature showed a high correlation (r > 0.7, p < 0.001) with gridded observed temperatures in most grid cells of the Yunnan–Guizhou Plateau, suggesting that the regional temperature changes were captured well by the reconstruction.

Corresponding author address: Zhenju Chen, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China. E-mail: zhenjuchen@hotmail.com
Save
  • Acharya, N., S. Chattopadhyay, U. C. Mohanty, S. K. Dash, and L. N. Sahoo, 2013: On the bias correction of general circulation model output for Indian summer monsoon. Meteor. Appl., 20, 349356, doi:10.1002/met.1294.

    • Search Google Scholar
    • Export Citation
  • Ahmed, M., and Coauthors, 2013: Continental-scale temperature variability during the past two millennia: Supplementary information. Nat. Geosci., 6, 339346, doi:10.1038/ngeo1834.

    • Search Google Scholar
    • Export Citation
  • Bayes, T., 1763: An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. London, 53, 370418, doi:10.1098/rstl.1763.0053.

    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., T. J. Osborn, F. H. Schweingruber, P. D. Jones, S. G. Shiyatov, and E. A. Vaganov, 2002: Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene, 12, 737757, doi:10.1191/0959683602hl587rp.

    • Search Google Scholar
    • Export Citation
  • Briffa, K. R., T. J. Osborn, and F. H. Schweingruber, 2004: Large-scale temperature inferences from tree rings: A review. Global Planet. Change, 40, 1126, doi:10.1016/S0921-8181(03)00095-X.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., X. Zhang, M. Cui, X. He, W. Ding, and J. Peng, 2012: Tree-ring based precipitation reconstruction for the forest–steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variability. Global Planet. Change, 8687, 4556, doi:10.1016/j.gloplacha.2012.01.009.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and R. L. Holmes, 1986: User’s manual for program ARSTAN. Laboratory of Tree-Ring Research Rep., 29 pp.

  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, doi:10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., J. G. Palmer, and R. D. D’Arrigo, 2002: Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree‐ring reconstruction of past austral summer temperatures in New Zealand. Geophys. Res. Lett., 29, 1667, doi:10.1029/2001GL014580.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian, 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 13711386, doi:10.1016/j.advwatres.2006.11.014.

    • Search Google Scholar
    • Export Citation
  • Esper, J., E. R. Cook, and F. H. Schweingruber, 2002: Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295, 22502253, doi:10.1126/science.1066208.

    • Search Google Scholar
    • Export Citation
  • Fan, Z., A. Bräuning, and K. Cao, 2008: Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings. Dendrochronologia, 26, 97107, doi:10.1016/j.dendro.2008.01.003.

    • Search Google Scholar
    • Export Citation
  • Fan, Z., A. Bräuning, Q. Tian, B. Yang, and K. Cao, 2010: Tree ring recorded May–August temperature variations since AD 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 296, 94102, doi:10.1016/j.palaeo.2010.06.017.

    • Search Google Scholar
    • Export Citation
  • Fang, K., N. Davi, X. Gou, F. Chen, E. Cook, J. Li, and R. D’Arrigo, 2010: Spatial drought reconstructions for central high Asia based on tree rings. Climate Dyn., 35, 941951, doi:10.1007/s00382-009-0739-9.

    • Search Google Scholar
    • Export Citation
  • Fang, K., X. Gou, F. Chen, E. Cook, J. Li, B. Buckley, and R. D’Arrigo, 2011: Large-scale precipitation variability over northwest China inferred from tree rings. J. Climate, 24, 34573468, doi:10.1175/2011JCLI3911.1.

    • Search Google Scholar
    • Export Citation
  • Grissino-Mayer, H. D., and H. C. Fritts, 1997: The International Tree-Ring Data Bank: An enhanced global database serving the global scientific community. Holocene, 7, 235238, doi:10.1177/095968369700700212.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2009: Climatic significance of tree-ring δ18O in the Qilian Mountains, northwestern China and its relationship to atmospheric circulation patterns. Chem. Geol., 268, 147154, doi:10.1016/j.chemgeo.2009.08.005.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and P. D. Jones, 2003: Global surface temperatures over the past two millennia. Geophys. Res. Lett., 30, 1820, doi:10.1029/2003GL017814.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1998: Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779787, doi:10.1038/33859.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA, 105, 13 25213 257, doi:10.1073/pnas.0805721105.

    • Search Google Scholar
    • Export Citation
  • Marcott, S. A., J. D. Shakun, P. U. Clark, and A. C. Mix, 2013: A reconstruction of regional and global temperature for the past 11,300 years. Science, 339, 11981201, doi:10.1126/science.1228026.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M. L., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., Y. Liu, Q. Li, and H. Linderholm, 2013: Tree-ring derived temperature records in the central Loess Plateau, China. Quat. Int., 283, 3035, doi:10.1016/j.quaint.2012.03.033.

    • Search Google Scholar
    • Export Citation
  • Wu, X., H. Liu, L. He, Z. Qi, O. A. Anenkhonov, A. Y. Korolyuk, Y. Yu, and D. Guo, 2014: Stand-total tree-ring measurements and forest inventory documented climate-induced forest dynamics in the semi-arid Altai Mountains. Ecol. Indic., 36, 231241, doi:10.1016/j.ecolind.2013.07.005.

    • Search Google Scholar
    • Export Citation
  • Yu, S., Y. Yuan, W. Wei, F. Chen, T. Zhang, H. Shang, R. Zhang, and L. Qing, 2013: A 352-year record of summer temperature reconstruction in the western Tianshan Mountains, China, as deduced from tree-ring density. Quat. Res., 80, 158166, doi:10.1016/j.yqres.2013.05.005.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and X. Yan, 2014a: Spatiotemporal change in geographical distribution of global climate types in the context of climate warming. Climate Dyn., 43, 595605, doi:10.1007/s00382-013-2019-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and X. Yan, 2014b: Temporal change of climate zones in China in the context of climate warming. Theor. Appl. Climatol., 115, 167175, doi:10.1007/s00704-013-0887-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and X. Yan, 2014c: A novel method to improve temperature simulations of general circulation models based on ensemble empirical mode decomposition and its application to multi-model ensembles. Tellus, 66A, 24846, doi:10.3402/tellusa.v66.24846.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and X. Yan, 2015: A new statistical precipitation downscaling method with Bayesian model averaging: A case study in China. Climate Dyn., 45, 25412555, doi:10.1007/s00382-015-2491-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., X. He, J. Li, N. Davi, Z. Chen, M. Cui, W. Chen, and N. Li, 2011: Temperature reconstruction (1750–2008) from Dahurian larch tree-rings in an area subject to permafrost in Inner Mongolia, northeast China. Climate Res., 47, 151159, doi:10.3354/cr00999.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Z. Xiong, X. Zhang, Y. Shi, J. Liu, Q. Shao, and X. Yan, 2016: Using multi-model ensembles to improve the simulated effects of land use/cover change on temperature: A case study over northeast China. Climate Dyn., 46, 765778, doi:10.1007/s00382-015-2611-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 74 5
PDF Downloads 135 26 1