• Abram, N. J., , R. Mulvaney, , and C. Arrowsmith, 2011: Environmental signals in a highly resolved ice core from James Ross Island, Antarctica. J. Geophys. Res., 116, D20116, doi:10.1029/2011JD016147.

    • Search Google Scholar
    • Export Citation
  • Agosta, C., , V. Favier, , C. Genthon, , H. Gallée, , G. Krinner, , J. T. M. Lenaerts, , and M. R. van den Broeke, 2012: A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Climate Dyn., 38, 7586, doi:10.1007/s00382-011-1103-4.

    • Search Google Scholar
    • Export Citation
  • Agosta, C., , V. Favier, , G. Krinner, , H. Gallée, , X. Fettweis, , and C. Genthon, 2013: High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dyn., 41, 32473260, doi:10.1007/s00382-013-1903-9.

    • Search Google Scholar
    • Export Citation
  • Allison, I., , R. Alley, , H. Fricker, , R. Thomas, , and R. Warner, 2009: Ice sheet mass balance and sea level. Antarct. Sci., 21, 413426, doi:10.1017/S0954102009990137.

    • Search Google Scholar
    • Export Citation
  • Altnau, S., , E. Schlosser, , E. Isaksson, , and D. Divine, 2015: Climatic signals from 76 shallow firn cores in Dronning Maud Land, East Antarctica. Cryosphere, 9, 925944, doi:10.5194/tc-9-925-2015.

    • Search Google Scholar
    • Export Citation
  • Arcone, S. A., , R. Jacobel, , and G. Hamilton, 2012: Unconformable stratigraphy in East Antarctica: Part 1. Large firn cosets, recrystallized growth, and model evidence for intensified accumulation. J. Glaciol., 58, 240252, doi:10.3189/2012JoJ11J044.

    • Search Google Scholar
    • Export Citation
  • Arthern, R. J., , D. P. Winebrenner, , and D. G. Vaughan, 2006: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J. Geophys. Res., 111, D06107, doi:10.1029/2004JD005667.

    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., , J. L. Gomez-Dans, , and J. A. Griggs, 2009: Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry. National Snow and Ice Data Center, accessed 12 July 2014, doi:10.5067/H0FQ1KL9NEKM.

  • Banta, J. R., , J. R. McConnell, , M. M. Frey, , R. C. Bales, , and K. Taylor, 2008: Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries. J. Geophys. Res., 113, D23102, doi:10.1029/2008JD010235.

    • Search Google Scholar
    • Export Citation
  • Bentley, C., 1993: Antarctic mass balance and sea level change. Eos, Trans. Amer. Geophys. Union, 74, 585586, doi:10.1029/93EO00653.

  • Bosilovich, M. G., , J. Chen, , F. R. Robertson, , and R. F. Adler, 2008: Evaluation of precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , F. R. Robertson, , and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1988: Snowfall in high southern latitudes. Rev. Geophys., 26, 149168, doi:10.1029/RG026i001p00149.

  • Bromwich, D. H., , and S.-H. Wang, 2008: A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulations based upon ERA-40. Dyn. Atmos. Oceans, 44, 213243, doi:10.1016/j.dynatmoce.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. J. Cassano, , T. Klein, , G. Heinemann, , K. M. Hines, , K. Steffen, , and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129, 22902309, doi:10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. P. Nicolas, , and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, doi:10.1175/2011JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Burgener, L., and Coauthors, 2013: An observed negative trend in West Antarctic accumulation rates from 1975 to 2010: Evidence from new observed and simulated records. J. Geophys. Res., 118, 42054216, doi:10.1002/jgrd.50362.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., , J. E. Box, , D. H. Bromwich, , L. Li, , and K. Steffen, 2001: Verification of Polar MM5 simulations of Greenland’s atmospheric circulation. J. Geophys. Res., 106, 33 86733 890, doi:10.1029/2001JD900044.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., , C. R. Wilson, , D. Blankenship, , and B. D. Tapley, 2009: Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci., 2, 859862, doi:10.1038/ngeo694.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., , J. Gregory, , P. Huybrechts, , M. Kuhn, , K. Lambeck, , M. Nhuan, , D. Qin, , and P. Woodworth, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. Houghton et al., Eds., Cambridge University Press, 639–693.

  • Connolley, W. M., , and J. C. King, 1996: A modeling and observational study of East Antarctic surface mass balance. J. Geophys. Res., 101, 13351344, doi:10.1029/95JD03034.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., , and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, doi:10.1175/2010JCLI4090.1.

    • Search Google Scholar
    • Export Citation
  • Das, I., and Coauthors, 2013: Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci., 6, 367371, doi:10.1038/ngeo1766.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, M., , C. Xiao, , Y. Li, , J. Ren, , S. Hou, , B. Jin, , and B. Sun, 2011: Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol., 57, 658666, doi:10.3189/002214311797409820.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2008: IFS Documentation—CY33R1. Part IV: Physical processes. European Centre for Medium-Range Weather Forecasts, 162 pp. [Available online at http://www.ecmwf.int/en/elibrary/9227-part-iv-physical-processes.]

  • Ekaykin, A. A., 2003: Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Ph.D. thesis, Joseph Fourier University, 122 pp.

  • Ekaykin, A. A., , V. Y. Lipenkov, , I. N. Kuz’mina, , J. R. Petit, , V. Masson-Delmotte, , and S. J. Johnsen, 2004: The changes in isotope composition and accumulation of snow at Vostok Station over the past 200 years. Ann. Glaciol., 39, 569575, doi:10.3189/172756404781814348.

    • Search Google Scholar
    • Export Citation
  • Ekaykin, A. A., , V. Y. Lipenkov, , and Y. A. Shibaev, 2012: Spatial distribution of the snow accumulation rate along the ice flow lines between Ridge B and Lake Vostok. Led Sneg, 4, 123128, doi:10.15356/2076-6734-2012-4-122-128.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., , M. R. van den Broeke, , E. van Meijgaard, , and W. J. van de Berg, 2010: Climate of the Greenland ice sheet using a high-resolution climate model—Part 1: Evaluation. Cryosphere, 4, 511527, doi:10.5194/tc-4-511-2010.

    • Search Google Scholar
    • Export Citation
  • Favier, V., and Coauthors, 2013: An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere, 7, 583597, doi:10.5194/tc-7-583-2013.

    • Search Google Scholar
    • Export Citation
  • Fernandoy, F., , H. Meyer, , H. Oerter, , F. Wilhelms, , W. Graf, , and J. Schwander, 2010: Temporal and spatial variation of stable isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. J. Glaciol., 56, 673687, doi:10.3189/002214310793146296.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., and Coauthors, 2004: New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dyn., 23, 803813, doi:10.1007/s00382-004-0462-5.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., and Coauthors, 2005: Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J. Glaciol., 51, 113124, doi:10.3189/172756505781829502.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., , S. Urbini, , M. Proposito, , C. Scarchilli, , and S. Gandolfi, 2007: Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 112, F02032, doi:10.1029/2006JF000638.

    • Search Google Scholar
    • Export Citation
  • Frezzotti, M., , C. Scarchilli, , S. Becagli, , M. Proposito, , and S. Urbini, 2013: A synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere, 7, 303319, doi:10.5194/tc-7-303-2013.

    • Search Google Scholar
    • Export Citation
  • Gallée, H., , A. Trouvilliez, , C. Agosta, , C. Genthon, , V. Favier, , and F. Naaim-Bouvet, 2013a: Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound.-Layer Meteor., 146, 133147, doi:10.1007/s10546-012-9764-z.

    • Search Google Scholar
    • Export Citation
  • Gallée, H., , A. Trouvilliez, , C. Amory, , C. Agosta, , C. Genthon, , X. Fettweis, , V. Favier, , and F. Naaim-Bouvet, 2013b: Simulations of blowing snow over Antarctica. Proc. 2013 Int. Snow Science Workshop, Grenoble, France, ISSP, 120–125.

  • Genthon, C., , P. Lardeux, , and G. Krinner, 2007: The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Adélie Land, Antarctica. J. Glaciol., 53, 635645, doi:10.3189/002214307784409333.

    • Search Google Scholar
    • Export Citation
  • Goodwin, I. D., , M. Higham, , I. Allison, , and J. Ren, 1994: Accumulation variability in eastern Kemp land, Antarctica. Ann. Glaciol., 20, 202206.

    • Search Google Scholar
    • Export Citation
  • Higham, M., , and M. Craven, 1997: Surface mass balance and snow surface properties from the Lambert Glacier basin traverses 1990–94. Antarctic CRC Research Rep. 9, Cooperative Research Centre for the Antarctic and Southern Ocean Environment, 129 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jouzel, J., , F. Vimeux, , N. Caillon, , G. Delaygue, , G. Hoffmann, , G. V. Masson-Delmotte, , and F. Parrenin, 2003: Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res., 108, 4361, doi:10.1029/2002JD002677.

    • Search Google Scholar
    • Export Citation
  • Kaspari, S., , P. A. Mayewski, , D. A. Dixon, , V. B. Spikes, , S. B. Sneed, , M. J. Handley, , and G. S. Hamilton, 2004: Climate variability in West Antarctica derived from annual accumulation rate records from ITASE firn/ice cores. Ann. Glaciol., 39, 585594, doi:10.3189/172756404781814447.

    • Search Google Scholar
    • Export Citation
  • Khodzher, T. V., , L. P. Golobokova, , E. Yu. Osipov, , Yu. A. Shibaev, , V. Ya. Lipenkov, , O. P. Osipova, , and J. R. Petit, 2014: Spatial–temporal dynamics of chemical composition of surface snow in East Antarctica along the Progress station–Vostok station transect. Cryosphere, 8, 931939, doi:10.5194/tc-8-931-2014.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., , O. Magand, , I. Simmonds, , C. Genthon, , and J.-L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of twentieth and twenty-first centuries. Climate Dyn., 28, 215230, doi:10.1007/s00382-006-0177-x.

    • Search Google Scholar
    • Export Citation
  • Kuipers Munneke, P., , M. R. van den Broeke, , J. T. M. Lenaerts, , M. G. Flanner, , A. S. Gardner, , and W. J. van de Berg, 2011: A new albedo parameterization for use in climate models over the Antarctic ice sheet. J. Geophys. Res., 116, D05114, doi:10.1029/2010JD015113.

    • Search Google Scholar
    • Export Citation
  • Laepple, T., , M. Werner, , and G. Lohmann, 2011: Synchronicity of Antarctic temperature and local solar insolation on orbital time scales. Nature, 471, 9194, doi:10.1038/nature09825.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., , L. M. Keller, , T. Markle, , and J. Gallagher, 2012: Fifty-year Amundsen–Scott South Pole station surface climatology. Atmos. Res., 118, 240259, doi:10.1016/j.atmosres.2012.06.027.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , S. J. Déry, , G. König-Langlo, , J. Ettema, , and P. Kuipers Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere, 4, 179190, doi:10.5194/tc-4-179-2010.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , M. R. van den Broeke, , W. J. van de Berg, , E. van Meijgaard, , and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, doi:10.1029/2011GL050713.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., , E. van den Hurk, , A. van Meijgaard, , A. P. van Ulden, , and H. Cuijpers, 2003: Simulation of present-day climate in RACMO2: First results and model developments. KNMI Tech. Rep. 252, 24 pp.

  • Ligtenberg, S. R. M., , W. J. van de Berg, , M. R. van den Broeke, , J. G. L. Rae, , and E. van Meijgaard, 2013: Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dyn., 41, 867884, doi:10.1007/s00382-013-1749-1.

    • Search Google Scholar
    • Export Citation
  • Ligtenberg, S. R. M., , J. T. M. Lenaerts, , M. R. van den Broeke, , and T. A. Scambos, 2014: On the formation of blue ice on Byrd Glacier, Antarctica. J. Glaciol., 60, 4150, doi:10.3189/2014JoG13J116.

    • Search Google Scholar
    • Export Citation
  • Magand, O., , C. Genthon, , M. Fily, , G. Krinner, , G. Picard, , M. Frezzotti, , and A. A. Ekaykin, 2007: An up-to-date quality-controlled surface mass balance data set for the 90°–180°E Antarctica sector and 1950–2005 period. J. Geophys. Res., 112, D12106, doi:10.1029/2006JD007691.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., , and D. A. Dixon, 2013: U.S. International Trans Antarctic Scientific Expedition (US ITASE) glaciochemical data, version 2. National Snow and Ice Data Center, accessed 5 January 2015, doi:10.7265/N51V5BXR.

  • Medley, B., and Coauthors, 2013: Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett., 40, 36493654, doi:10.1002/grl.50706.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and Coauthors, 2006a: Insignificant change in Antarctic snowfall since the international geophysical year. Science, 313, 827831, doi:10.1126/science.1128243.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., , D. H. Bromwich, , and S.-H. Wang, 2006b: Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos. Trans. Roy. Soc. London, 364, 16831708, doi:10.1098/rsta.2006.1795.

    • Search Google Scholar
    • Export Citation
  • Oerter, H., , F. Wilhelms, , F. Jung-Rothenhäusler, , F. Göktas, , H. Miller, , W. Graf, , and S. Sommer, 2000: Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Ann. Glaciol., 30, 2734, doi:10.3189/172756400781820705.

    • Search Google Scholar
    • Export Citation
  • Richardson, C., , E. Aarholt, , S. E. Hamran, , P. Holmlund, , and E. Isaksson, 1997: Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. J. Geophys. Res., 102, 20 34320 353, doi:10.1029/97JB01441.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. R., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , I. Velicogna, , M. R. van den Broeke, , A. Monaghan, , and J. T. M. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL046583.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., and Coauthors, 2012: Extent of low-accumulation ‘wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J. Glaciol., 58, 633647, doi:10.3189/2012JoG11J232.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., , M. Frezzotti, , P. Grigioni, , L. De Silvestri, , L. Agnoletto, , and S. Dolci, 2010: Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34, 11951206, doi:10.1007/s00382-009-0601-0.

    • Search Google Scholar
    • Export Citation
  • Schlosser, E., 1999: Effects of seasonal variability of accumulation on yearly mean δ18O values in Antarctic snow. J. Glaciol., 45, 463468.

    • Search Google Scholar
    • Export Citation
  • Schlosser, E., , H. Anschütz, , E. Isaksson, , T. Martma, , D. Divine, , and O.-A. Nøst, 2012: 2012: Surface mass balance and stable oxygen isotope ratios from shallow firn cores on Fimbulisen, East Antarctica. Ann. Glaciol., 53, 7078, doi:10.3189/2012AoG60A102.

    • Search Google Scholar
    • Export Citation
  • Schlosser, E., , H. Anschütz, , D. Divine, , T. Martma, , A. Sinisalo, , S. Altnau, , and E. Isaksson, 2014: Recent climate tendencies on an East Antarctic ice shelf inferred from a shallow firn core network. J. Geophys. Res. Atmos., 119, 65496562, doi:10.1002/2013JD020818.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Siegert, M. J., , R. C. A. Hindmarsh, , and G. S. Hamilton, 2003: Evidence of a large surface ablation zone in central East Antarctica during the last Ice Age. Quat. Res., 59, 114121, doi:10.1016/S0033-5894(02)00014-5.

    • Search Google Scholar
    • Export Citation
  • Sinisalo, A., and Coauthors, 2013: Surface mass balance on Fimbul ice shelf, East Antarctica: Comparison of field measurements and large-scale studies. J. Geophys. Res. Atmos., 118, 11 62511 635, doi:10.1002/jgrd.50875.

    • Search Google Scholar
    • Export Citation
  • Stenni, B., , M. Proposito, , R. Gragnani, , O. Flora, , J. Jouzel, , S. Falourd, , and M. Frezzotti, 2002: Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res., 107, 4076, doi:10.1029/2000JD000317.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., , G. J. Marshall, , and J. R. McConnell, 2008: A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys. Res. Lett., 35, L01706, doi:10.1029/2007GL032529.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., , J. S. Hosking, , R. R. Tuckwell, , R. A. Warren, , and E. C. Ludlow, 2015: Twentieth century increase in snowfall in coastal West Antarctica. Geophys. Res. Lett., 42, 93879393, doi:10.1002/2015GL065750.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., , D. A. Peel, , E. Mosley-Thompson, , R. Mulvaney, , J. Dai, , P. N. Lin, , M. E. Davis, , and C. F. Raymond, 1994: Climate change since AD 1510 on Dyer Plateau, Antarctic Peninsula: Evidence for recent climate change. Ann. Glaciol., 20, 420426.

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., , and B. Medley, 2016: Upper air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica. Cryosphere, 10, 459463, doi:10.5194/tc-10-459-2016.

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., , M. R. van den Broeke, , C. H. Reijmer, , and E. van Meijgaard, 2005: Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model. Ann. Glaciol., 41, 97104, doi:10.3189/172756405781813302.

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., , M. R. van den Broeke, , C. Reijmer, , and E. Van Meijgaard, 2006: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111, D11104, doi:10.1029/2005JD006495.

    • Search Google Scholar
    • Export Citation
  • Van Lipzig, N. P. M., , and M. R. van den Broeke, 2002: A model study on the relation between atmospheric boundary-layer dynamics and poleward atmospheric moisture transport in Antarctica. Tellus, 54A, 497511, doi:10.1034/j.1600-0870.2002.201404.x.

    • Search Google Scholar
    • Export Citation
  • van Ommen, T. D., , and V. Morgan, 2010: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat. Geosci., 3, 267272, doi:10.1038/ngeo761.

    • Search Google Scholar
    • Export Citation
  • van Wessem, J. M., and Coauthors, 2014a: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761770, doi:10.3189/2014JoG14J051.

    • Search Google Scholar
    • Export Citation
  • van Wessem, J. M., , C. H. Reijmer, , J. T. M. Lenaerts, , W. J. Van de Berg, , M. R. Van den Broeke, , and E. Van Meijgaard, 2014b: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica. Cryosphere, 8, 125135, doi:10.5194/tc-8-125-2014.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., , J. L. Bamber, , M. Giovinetto, , J. Russell, , and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12, 933946, doi:10.1175/1520-0442(1999)012<0933:RONSMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., , and J. Wahr, 2006: Measurements of time-variable gravity show mass loss in Antarctica. Science, 311, 17541756, doi:10.1126/science.1123785.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , S. Hou, , W. Sun, , J. T. M. Lenaerts, , M. R. van den Broeke, , and J. M. van Wessem, 2015: Recent surface mass balance from Syowa Station to Dome F, East Antarctica: Comparison of field observations, atmospheric reanalyses, and a regional atmospheric climate model. Climate Dyn., 45, 28852899, doi:10.1007/s00382-015-2512-6.

    • Search Google Scholar
    • Export Citation
  • Wen, J., , J. Kang, , D. Wang, , B. Sun, , Y. Li, , Z. Li, , and J. Li, 2001: Density, stratigraphy and accumulation at DT001 in Princess Elizabeth Land, East Antarctic Ice Sheet. Polar Meteor. Glaciol., 15, 4354.

    • Search Google Scholar
    • Export Citation
  • Wouters, B., , J. L. Bamber, , M. R. van den Broeke, , J. T. M. Lenaerts, , and I. Sasgen, 2013: Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat. Geosci., 6, 613616, doi:10.1038/ngeo1874.

    • Search Google Scholar
    • Export Citation
  • Xiao, C., , J. Ren, , D. H. Qin, , Z. Q. Li, , W. Z. Sun, , and I. Allison, 2001: Complexity of the climatic regime over the Lambert Glacier basin of the East Antarctica ice sheet: Firn core evidences. J. Glaciol., 47, 160163, doi:10.3189/172756501781832539.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., , and M. B. Giovinetto, 2011: Overview and assessment of Antarctic Ice-Sheet mass balance estimates: 1992–2009. Surv. Geophys., 32, 351376, doi:10.1007/s10712-011-9123-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 137 29
PDF Downloads 91 91 22

A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations

View More View Less
  • 1 College of Geography and Environment, Shandong Normal University, Jinan, China
  • 2 Institute of Climate System, Chinese Academy of Meteorological Sciences, Beijing, China
  • 3 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
  • 4 Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • 5 Austrian Polar Research Institute, Vienna, Austria
  • 6 German Weather Service, Offenbach, Germany
  • 7 British Antarctic Survey, Cambridge, United Kingdom
  • 8 Norwegian Polar Institute, Fram Centre, Tromsø, Norway
  • 9 Department of Pathology, Yale University, New Haven
© Get Permissions
Restricted access

Abstract

In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.

Corresponding author address: Yetang Wang, Shandong Normal University, College of Geography and Environment, Wenhua Dong Road 88, Jinan 250014, China. E-mail: wangyetang@163.com

Abstract

In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.

Corresponding author address: Yetang Wang, Shandong Normal University, College of Geography and Environment, Wenhua Dong Road 88, Jinan 250014, China. E-mail: wangyetang@163.com
Save