Dynamical Link between the Barents–Kara Sea Ice and the Arctic Oscillation

Xiao-Yi Yang State Key Laboratory of Marine Environmental Science, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Xiao-Yi Yang in
Current site
Google Scholar
PubMed
Close
,
Xiaojun Yuan Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Xiaojun Yuan in
Current site
Google Scholar
PubMed
Close
, and
Mingfang Ting Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recent accelerated Arctic sea ice decline has been proposed as a possible forcing factor for midlatitude circulation changes, which can be projected onto the Arctic Oscillation (AO) and/or North Atlantic Oscillation (NAO) mode. However, the timing and physical mechanisms linking AO responses to the Arctic sea ice forcing are not entirely understood. In this study, the authors suggest a connection between November sea ice extent in the Barents and Kara Seas and the following winter’s atmospheric circulation in terms of the fast sea ice retreat and the subsequent modification of local air–sea heat fluxes. In particular, the dynamical processes that link November sea ice in the Barents and Kara Seas with the development of AO anomalies in February is explored. In response to the lower-tropospheric warming associated with the initial thermal effect of the sea ice loss, the large-scale atmospheric circulation goes through a series of dynamical adjustment processes: The decelerated zonal-mean zonal wind anomalies propagate gradually from the subarctic to midlatitudes in about one month. The equivalent barotropic AO dipole pattern develops in January because of wave–mean flow interaction and firmly establishes itself in February following the weakening and warming of the stratospheric polar vortex. This connection between sea ice loss and the AO mode is robust on time scales ranging from interannual to decadal. Therefore, the recent winter AO weakening and the corresponding midlatitude climate change may be partly associated with the early winter sea ice loss in the Barents and Kara Seas.

Corresponding author address: Xiao-Yi Yang, C3-418, Xiping building, Xiang An Campus, Xiamen University, Xiang An Nan Road, Xiamen, Fujian 361102, China. E-mail: xyyang@xmu.edu.cn

Abstract

The recent accelerated Arctic sea ice decline has been proposed as a possible forcing factor for midlatitude circulation changes, which can be projected onto the Arctic Oscillation (AO) and/or North Atlantic Oscillation (NAO) mode. However, the timing and physical mechanisms linking AO responses to the Arctic sea ice forcing are not entirely understood. In this study, the authors suggest a connection between November sea ice extent in the Barents and Kara Seas and the following winter’s atmospheric circulation in terms of the fast sea ice retreat and the subsequent modification of local air–sea heat fluxes. In particular, the dynamical processes that link November sea ice in the Barents and Kara Seas with the development of AO anomalies in February is explored. In response to the lower-tropospheric warming associated with the initial thermal effect of the sea ice loss, the large-scale atmospheric circulation goes through a series of dynamical adjustment processes: The decelerated zonal-mean zonal wind anomalies propagate gradually from the subarctic to midlatitudes in about one month. The equivalent barotropic AO dipole pattern develops in January because of wave–mean flow interaction and firmly establishes itself in February following the weakening and warming of the stratospheric polar vortex. This connection between sea ice loss and the AO mode is robust on time scales ranging from interannual to decadal. Therefore, the recent winter AO weakening and the corresponding midlatitude climate change may be partly associated with the early winter sea ice loss in the Barents and Kara Seas.

Corresponding author address: Xiao-Yi Yang, C3-418, Xiping building, Xiang An Campus, Xiamen University, Xiang An Nan Road, Xiamen, Fujian 361102, China. E-mail: xyyang@xmu.edu.cn
Save
  • Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905, doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Sephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14, 34953507, doi:10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1980: Estimation of heat and mass fluxes over Arctic leads. Mon. Wea. Rev., 108, 20572063, doi:10.1175/1520-0493(1980)108<2057:EOHAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., R. B. Ingvaldsen, L. H. Smedsrud, and C. Schrum, 2011: Dense water formation and circulation in the Barents Sea. Deep-Sea Res. I, 58, 801817, doi:10.1016/j.dsr.2011.06.001.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, doi:10.1175/JCLI-D-11-00466.1.

    • Search Google Scholar
    • Export Citation
  • Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 4728–4733, doi:10.1002/grl.50880.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dynmikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation: A review. Global Planet. Change, 68, 149163, doi:10.1016/j.gloplacha.2009.04.001.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., and C. Cassou, 2013: Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett., 40, 36823687, doi:10.1002/grl.50643.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 2013: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. National Snow and Ice Data Center, accessed March 2014. [Available online at http://nsidc.org/data/nsidc-0051.html.]

  • Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 53355343, doi:10.1175/2007JCLI1725.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014a: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, J. Jones, M. Barlow, D. Whittleston, and D. Entekhabi, 2014b: Linking Siberian snow cover to precursors of stratospheric variability. J. Climate, 27, 54225432, doi:10.1175/JCLI-D-13-00779.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillps, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Dethloff, K., and Coauthors, 2006: A dynamical link between the Arctic and the global climate system. Geophys. Res. Lett., 33, L03703, doi:10.1029/2005GL025245.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi:10.1029/2007GL030995.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2013: Middle atmosphere dynamics. An Introduction to Dynamic Meteorology, 5th ed. International Geophysics Series, Vol. 88, Academic Press, 407–447.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11 595, doi:10.3402/tellusa.v64i0.11595.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature, 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., and L. Brodeau, 2014: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dyn., 42, 31013120, doi:10.1007/s00382-013-1821-x.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., U. Mikolajewicz, J. H. Jungclaus, and A. Kroll, 2009: Sea ice in the Barents Sea: Seasonal to interannual variability and climate feedbacks in a global coupled model. Climate Dyn., 32, 11191138, doi:10.1007/s00382-008-0450-2.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., M. Caian, G. Nikulin, and S. Schimanke, 2015: Regional Arctic sea ice variations as predictor for winter climate conditions. Climate Dyn., 46, 317337, doi:10.1007/s00382-015-2586-1.

    • Search Google Scholar
    • Export Citation
  • Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914924, doi:10.1175/JCLI-D-13-00186.1.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effect of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, doi:10.5194/tc-6-1383-2012.

    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1995: Response of climate and cyclones to reductions in Arctic winter sea ice. J. Geophys. Res., 100, 47914806, doi:10.1029/94JC02206.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., R. Senan, R. E. Benestad, and A. Melsom, 2012: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 24372448, doi:10.1007/s00382-011-1169-z.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, doi:10.1029/2004GL021752.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15 787, doi:10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmosphere circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16, 20782085, doi:10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2004: Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J. Climate, 17, 44854497, doi:10.1175/JCLI-3224.1.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Sato, K., J. Inoue, and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, doi:10.1088/1748-9326/9/8/084009.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., H. Loeng, B. Rudels, V. K. Ozhigin, and W. Dieck, 2002: Atlantic water flow through the Barents and Kara Seas. Deep-Sea Res. I, 49, 22812298, doi:10.1016/S0967-0637(02)00125-5.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, doi:10.1038/nclimate2271.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979-2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Search Google Scholar
    • Export Citation
  • Simonsen, K., and P. M. Haugan, 1996: Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res., 101, 65536576, doi:10.1029/95JC03305.

    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125, doi:10.1175/JCLI3649.1.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Spielhagen, R. F., and Coauthors, 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450453, doi:10.1126/science.1197397.

    • Search Google Scholar
    • Export Citation
  • Strey, S. T., W. L. Chapman, and J. E. Walsh, 2010: The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res., 115, D23103, doi:10.1029/2009JD013294.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2011: Dependence of NAO variability on coupling with sea ice. Climate Dyn., 36, 16811689, doi:10.1007/s00382-010-0752-z.

    • Search Google Scholar
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, doi:10.1175/2009JCLI3100.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., and X. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, doi:10.1029/2009JD013574.

    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., and X. Yuan, 2014: The early winter sea ice variability under the recent Arctic climate shift. J. Climate, 27, 50925110, doi:10.1175/JCLI-D-13-00536.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Ikeda, and J. E. Walsh, 2003: Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice–ocean model. J. Climate, 16, 21592177, doi:10.1175/2758.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and J. Li, 2008: Climate change in China congruent with the linear trends of the Annual Modes. Atmos. Ocean. Sci. Lett., 1, 17.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1274 367 29
PDF Downloads 983 201 16