A Genesis Index for Monsoon Disturbances

Sarah D. Ditchek Yale University, New Haven, Connecticut

Search for other papers by Sarah D. Ditchek in
Current site
Google Scholar
PubMed
Close
,
William R. Boos Yale University, New Haven, Connecticut

Search for other papers by William R. Boos in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
, and
Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Synoptic-scale monsoon disturbances produce the majority of continental rainfall in the monsoon regions of South Asia and Australia, yet there is little understanding of the conditions that foster development of these low pressure systems. Here a genesis index is used to associate monsoon disturbance genesis in a global domain with monthly mean, climatological environmental variables. This monsoon disturbance genesis index (MDGI) is based on four objectively selected variables: total column water vapor, low-level absolute vorticity, an approximate measure of convective available potential energy, and midtropospheric relative humidity. A Poisson regression is used to estimate the index coefficients. Unlike existing tropical cyclone genesis indices, the MDGI is defined over both land and ocean, consistent with the fact that monsoon disturbance genesis can occur over land. The index coefficients change little from their global values when estimated separately for the Asian–Australian monsoon region or the Indian monsoon region, suggesting that the conditions favorable for monsoon disturbance genesis, and perhaps the dynamics of genesis itself, are common across multiple monsoon regions. Vertical wind shear is found to be a useful predictor in some regional subdomains; although previous studies suggested that baroclinicity may foster monsoon disturbance genesis, here genesis frequency is shown to be reduced in regions of strong climatological vertical shear. The coefficients of the MDGI suggest that monsoon disturbance genesis is fostered by humid, convectively unstable environments that are rich in vorticity. Similarities with indices used to describe the distribution of tropical cyclone genesis are discussed.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

Corresponding author address: Sarah D. Ditchek, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Earth Science 341, 1400 Washington Ave., Albany, NY 12222. E-mail: sarahditchek@gmail.com

Abstract

Synoptic-scale monsoon disturbances produce the majority of continental rainfall in the monsoon regions of South Asia and Australia, yet there is little understanding of the conditions that foster development of these low pressure systems. Here a genesis index is used to associate monsoon disturbance genesis in a global domain with monthly mean, climatological environmental variables. This monsoon disturbance genesis index (MDGI) is based on four objectively selected variables: total column water vapor, low-level absolute vorticity, an approximate measure of convective available potential energy, and midtropospheric relative humidity. A Poisson regression is used to estimate the index coefficients. Unlike existing tropical cyclone genesis indices, the MDGI is defined over both land and ocean, consistent with the fact that monsoon disturbance genesis can occur over land. The index coefficients change little from their global values when estimated separately for the Asian–Australian monsoon region or the Indian monsoon region, suggesting that the conditions favorable for monsoon disturbance genesis, and perhaps the dynamics of genesis itself, are common across multiple monsoon regions. Vertical wind shear is found to be a useful predictor in some regional subdomains; although previous studies suggested that baroclinicity may foster monsoon disturbance genesis, here genesis frequency is shown to be reduced in regions of strong climatological vertical shear. The coefficients of the MDGI suggest that monsoon disturbance genesis is fostered by humid, convectively unstable environments that are rich in vorticity. Similarities with indices used to describe the distribution of tropical cyclone genesis are discussed.

Current affiliation: Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York.

Corresponding author address: Sarah D. Ditchek, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Earth Science 341, 1400 Washington Ave., Albany, NY 12222. E-mail: sarahditchek@gmail.com
Save
  • Ajayamohan, R., W. J. Merryfield, and V. V. Kharin, 2010: Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J. Climate, 23, 1004–1013, doi:10.1175/2009JCLI2918.1.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015a: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226–243, doi:10.1002/2014MS000397.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015b: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278–283, doi:10.1038/ngeo2385.

    • Search Google Scholar
    • Export Citation
  • Aon Benfield, 2010: Pakistan flood event recap report. Tech. Rep., 11 pp. [Available online at http://www.aon.com/attachments/reinsurance/201008_pakistan_flood.pdf.]

  • Bell, R., K. Hodges, P. L. Vidale, J. Strachan, and M. Roberts, 2014: Simulation of the global ENSO–tropical cyclone teleconnection by a high-resolution coupled general circulation model. J. Climate, 27, 6404–6422, doi:10.1175/JCLI-D-13-00559.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., M. J. Reeder, and C. Jakob, 2012: Coherent synoptic disturbances in the Australian monsoon. J. Climate, 25, 8409–8421, doi:10.1175/JCLI-D-12-00143.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 1035–1048, doi:10.1002/qj.2454.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 1517–1528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and S. P. Weng, 1999: Interannual and intraseasonal variations in monsoon depressions and their westward-propagating predecessors. Mon. Wea. Rev., 127, 1005–1020, doi:10.1175/1520-0493(1999)127<1005:IAIVIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 1767–1788, doi:10.1175/JAS-D-15-0254.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233, doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2329, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Farrell, B., 1985: Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 2718–2727, doi:10.1175/1520-0469(1985)042<2718:TGODBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Godbole, R. V., 1977: The composite structure of the monsoon depression. Tellus, 29A, 25–40, doi:10.1111/j.2153-3490.1977.tb00706.x.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. N. Keshavamurty, and V. Satyan, 1980: Role of barotropic, baroclinic and combined barotropic-baroclinic instability for the growth of monsoon depressions and mid-tropospheric cyclones. J. Earth Syst. Sci., 89, 79–97.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Hodges, K. I., 1995: Feature tracking on the unit-sphere. Mon. Wea. Rev., 123, 3458–3465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low-pressure systems. Quart. J. Roy. Meteor. Soc., 141, 1049–1064, doi:10.1002/qj.2447.

    • Search Google Scholar
    • Export Citation
  • Joseph, S., and Coauthors, 2015: North Indian heavy rainfall event during June 2013: Diagnostics and extended range prediction. Climate Dyn., 44, 2049–2065, doi:10.1007/s00382-014-2291-5.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 2212–2230, doi:10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 4285–4305, doi:10.1175/2010JCLI2953.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and S. Gadgil, 1985: On the structure of the 30 to 50 day mode over the globe during FGGE. Tellus, 37A, 336–360, doi:10.1111/j.1600-0870.1985.tb00432.x.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Molinari, H.-L. Pan, and V. Wong, 1977: Downstream amplification and formation of monsoon disturbances. Mon. Wea. Rev., 105, 1281–1297, doi:10.1175/1520-0493(1977)105<1281:DAAFOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., V. Wong, H.-L. Pan, R. Pasch, J. Molinari, and P. Ardanuy, 1983: A three-dimensional planetary boundary layer model for the Somali jet. J. Atmos. Sci., 40, 894–908, doi:10.1175/1520-0469(1983)040<0894:ATDPBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., B. Farrell, and A. J. Rosenthal, 1983: Absolute barotropic instability and monsoon depressions. J. Atmos. Sci., 40, 1178–1184, doi:10.1175/1520-0469(1983)040<1178:ABIAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models. 2nd ed. Chapman and Hall, 532 pp.

  • Mooley, D. A., and J. Shukla, 1987: Characteristics of the westward-moving summer monsoon low pressure systems over the Indian region and their relationship with the monsoon rainfall. University of Maryland Center for Ocean–Land–Atmosphere Interactions Tech. Rep., 128 pp.

  • Moorthi, S., and A. Arakawa, 1985: Baroclinic instability with cumulus heating. J. Atmos. Sci., 42, 2007–2031, doi:10.1175/1520-0469(1985)042<2007:BIWCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prajeesh, A. G., K. Ashok, and D. Rao, 2013: Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Sci. Rep., 3, 1–8, doi:10.1038/srep02989.

    • Search Google Scholar
    • Export Citation
  • Praveen, V., S. Sandeep, and R. S. Ajayamohan, 2015: On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. J. Climate, 28, 5305–5324, doi:10.1175/JCLI-D-14-00415.1.

    • Search Google Scholar
    • Export Citation
  • Ramesh Kumar, M. R., and S. Sankar, 2010: Impact of global warming on cyclonic storms over North Indian Ocean. Indian J. Mar. Sci., 39, 516–520.

    • Search Google Scholar
    • Export Citation
  • Rao, B. R., D. V. Rao, and V. B. Rao, 2004: Decreasing trend in the strength of Tropical Easterly Jet during the Asian summer monsoon season and the number of tropical cyclonic systems over Bay of Bengal. Geophys. Res. Lett., 31, L14103, doi:10.1029/2004GL019817.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., S. L. Sessions, and C. LĂłpez Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., Ĺ˝. Fuchs, S. Gjorgjievska, and S. Sessions, 2015: Balanced dynamics and convection in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 1093–1116, doi:10.1002/2015MS000467.

    • Search Google Scholar
    • Export Citation
  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330–343, doi:10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1984: Quasi-geostrophic diagnosis of the monsoon depression of 5–8 July 1979. J. Atmos. Sci., 41, 538–552, doi:10.1175/1520-0469(1984)041<0538:QGDOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1977: Barotropic-baroclinic instability of mean zonal wind during summer monsoon. Pure Appl. Geophys., 115, 1449–1461, doi:10.1007/BF00874418.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1977: Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys., 115, 1501–1529, doi:10.1007/BF00874421.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 2006: A study on the monsoon low pressure systems over the Indian region and their relationship with drought and excess monsoon seasonal rainfall. Center for Ocean–Land–Atmosphere Studies Tech. Rep. 217, 145 pp.

  • Solow, A. R., 1989: Statistical modeling of storm counts. J. Climate, 2, 131–136, doi:10.1175/1520-0442(1989)002<0131:SMOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 2335–2357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, doi:10.1029/2011GL050368.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176.

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. E. Toma, and H.-M. Kim, 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett., 38, L04806, doi:10.1029/2010GL046346.

    • Search Google Scholar
    • Export Citation
  • Yoon, J. H., and T. C. Chen, 2005: Water vapor budget of the Indian monsoon depression. Tellus, 57A, 770–782, doi:10.1111/j.1600-0870.2005.00145.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 684 162 14
PDF Downloads 550 93 10