• Arblaster, J., and L. Alexander, 2012: The impact of El Niño–Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett., 39, L20702, doi:10.1029/2012GL053409.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and J. M. Wallace, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, doi:10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, doi:10.1175/JCLI-D-13-00591.1.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 31233149, doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, doi:10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527547, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Terray, and A. S. Phillips, 2015: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, doi:10.1175/JCLI-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N., J. Pal, R. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, doi:10.1073/pnas.0506042102.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013a: Evolving land–atmosphere interactions over North America from CMIP5 simulations. J. Climate, 26, 73137327, doi:10.1175/JCLI-D-12-00454.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013b: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, doi:10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 12901294, doi:10.1002/2013GL058826.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1978: Dynamics of blocking highs. J. Atmos. Sci., 35, 17881801, doi:10.1175/1520-0469(1978)035<1788:DOBH>2.0.CO;2.

  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advancements in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., E. F. Wood, and R. K. Vinukollu, 2012: A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeor., 13, 749784, doi:10.1175/JHM-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K., and E. Eltahir, 2003: The impact of El Niño–Southern Oscillation on maximum temperature extremes. J. Hydrometeor., 4, 570583, doi:10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, E., S. Seneviratne, P. Vidale, D. Lüthi, and C. Schär, 2007a: Soil moisture–atmosphere interactions during the 2003 European summer heatwave. J. Climate, 20, 50815099, doi:10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, E., S. Seneviratne, D. Lüthi, and C. Schär, 2007b: The contribution of land–atmosphere coupling to recent European summer heatwaves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.]

  • Ganguly, A. R., K. Steinhaeuser, D. J. Erickson III, M. Branstetter, E. S. Parish, N. Singh, J. Drake, and L. Buja, 2009: Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc. Natl. Acad. Sci. USA, 106, 15 55515 559, doi:10.1073/pnas.0904495106.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M., and Coauthors, 2012: CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The AMIP experiment, served by ESGF. DKRZ World Data Center for Climate, accessed 2 April 2015, doi:10.1594/WDCC/CMIP5.MXELam.

  • Higgins, R., A. Leetmaa, Y. Xue, and A. Barnston, 2000: Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature. J. Climate, 13, 39944017, doi:10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691694, doi:10.1126/science.1079053.

  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, doi:10.1175/JCLI-D-12-00270.1.

  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. Sobel, A. D. Del Genio, Y.-H. Chen, S. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeor., 5, 10491063, doi:10.1175/JHM-387.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004b: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, doi:10.1175/2010JCLI3172.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, doi:10.1175/JCLI-D-11-00575.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., A. Leetmaa, and M. J. Nath, 2006: Attribution of atmospheric variations in the 1997–2003 period to SST anomalies in the Pacific and Indian Ocean basins. J. Climate, 19, 36073628, doi:10.1175/JCLI3813.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, R., E. Jaeger, and S. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, doi:10.1029/2010GL042764.

  • Lorenz, R., A. J. Pitman, A. L. Hirsch, and J. Srbinovsky, 2015: Intraseasonal versus interannual measures of land–atmosphere coupling strength in a global climate model: GLACE-1 versus GLACE-CMIP5 Experiments in ACCESS1.3b. J. Hydrometeor., 16, 22762295, doi:10.1175/JHM-D-14-0206.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, G., M. Palecki, and J. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: NCEP North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. van den Berg, R. Teuling, and R. D. Jeu, 2012: Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

  • Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, and J. V.-G. de Arellano, 2014: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci., 7, 345349, doi:10.1038/ngeo2141.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. J. Hydrometeor., 41, 128134, doi:10.1002/2013GL058055.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: A mixed assessment. J. Climate, 19, 815837, doi:10.1175/JCLI3635.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS, 2015: Natural hazard statistics: Weather fatalities. National Climatic Data Center, accessed 20 August 2015. [Available online at http://www.nws.noaa.gov/om/hazstats.shtml.]

  • Pegion, P. J., and A. Kumar, 2010: Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J. Climate, 23, 43274341, doi:10.1175/2010JCLI3295.1.

    • Search Google Scholar
    • Export Citation
  • Perkins, S., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, doi:10.1016/j.atmosres.2015.05.014.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and greenhouse gas–induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, doi:10.1175/JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2006: IPCC’s twentieth-century climate simulations: Varied representations of North American hydroclimate variability. J. Climate, 19, 40414058, doi:10.1175/JCLI3809.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2013: Atmosphere–land surface interactions over the Southern Great Plains: Characterization from pentad analysis of DOE ARM field observations and NARR. J. Climate, 26, 875886, doi:10.1175/JCLI-D-11-00380.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bachmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, doi:10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509, doi:10.1126/science.275.5299.502.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, doi:10.1038/nature05095.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S., T. Corti, E. Davin, M. Hirschi, E. Jaeger, I. Lehner, B. Orlowsky, and A. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, doi:10.1038/ngeo2449.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 92479290, doi:10.1175/JCLI-D-12-00593.1.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, doi:10.1038/nature03089.

    • Search Google Scholar
    • Export Citation
  • Sutton, R., and D. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thacker, M. T., R. Lee, R. I. Sabogal, and A. Henderson, 2008: Overview of deaths associated with natural events, United States, 1979–2004. Disasters, 32, 303315, doi:10.1111/j.1467-7717.2008.01041.x.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, doi:10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783, doi:10.1126/science.270.5237.780.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Deser, B. Smoliak, and A. Phillips, 2015: Attribution of climate change in the presence of internal variability. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific Publishing, 1–29.

  • Wang, H., and M. Ting, 1999: Seasonal cycle of the climatological stationary waves in the NCEP–NCAR reanalysis. J. Atmos. Sci., 56, 38923919, doi:10.1175/1520-0469(1999)056<3892:SCOTCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., 2013: Factors associated with decadal variability in Great Plains summertime surface temperatures. J. Climate, 26, 343350, doi:10.1175/JCLI-D-11-00713.1.

    • Search Google Scholar
    • Export Citation
  • Whitman, S., G. Good, E. Donoghue, N. Benbow, W. Shou, and S. Mou, 1997: Mortality in Chicago attributed to the July 1995 heat wave. Amer. J. Public Health, 87, 15151518, doi:10.2105/AJPH.87.9.1515.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 3456, doi:10.1007/s13351-014-3041-7.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2005: Warm-season rainfall variability over the U.S. Great Plains and its correlation with evapotranspiration in a climate simulation. Geophys. Res. Lett., 32, L17402, doi:10.1029/2005GL023422.

  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W.-C. Wang, and L. R. Leung, 2008: Contribution of land–atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, doi:10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 2 2 2

Summer U.S. Surface Air Temperature Variability: Controlling Factors and AMIP Simulation Biases

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental United States in the Atmospheric Model Intercomparison Project (AMIP) experiment from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-yr period (1979–2008). Regions of high SAT variability are closely associated with midtropospheric highs, subsidence, and radiative heating accompanying clear-sky conditions. The land surface exerts a spatially variable influence on SAT through the sensible heat flux and is a second-order effect in the high-variability centers of action (COAs) in observational estimates. The majority of the AMIP models feature high SAT variability over the central United States, displaced south and/or west of observed COAs. SAT COAs in models tend to be concomitant and strongly coupled with regions of high sensible heat flux variability, suggesting that excessive land–atmosphere interaction in these models modulates U.S. summer SAT. In the central United States, models with climatological warm biases also feature less evapotranspiration than ERA-Interim but reasonably reproduce observed SAT variability in the region. Models that overestimate SAT variability tend to reproduce ERA-Interim SAT and evapotranspiration climatology. In light of potential model biases, this analysis calls for careful evaluation of the land–atmosphere interaction hot spot region identified in the central United States. Additionally, tropical sea surface temperatures play a role in forcing the leading EOF mode for summer SAT in models. This relationship is not apparent in observations.

Corresponding author address: Anna L. Merrifield, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., MC 0206, La Jolla, CA 92093. E-mail: almerrif@ucsd.edu

Abstract

This study documents and investigates biases in simulating summer surface air temperature (SAT) variability over the continental United States in the Atmospheric Model Intercomparison Project (AMIP) experiment from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Empirical orthogonal function (EOF) and multivariate regression analyses are used to assess the relative importance of circulation and the land surface feedback at setting summer SAT over a 30-yr period (1979–2008). Regions of high SAT variability are closely associated with midtropospheric highs, subsidence, and radiative heating accompanying clear-sky conditions. The land surface exerts a spatially variable influence on SAT through the sensible heat flux and is a second-order effect in the high-variability centers of action (COAs) in observational estimates. The majority of the AMIP models feature high SAT variability over the central United States, displaced south and/or west of observed COAs. SAT COAs in models tend to be concomitant and strongly coupled with regions of high sensible heat flux variability, suggesting that excessive land–atmosphere interaction in these models modulates U.S. summer SAT. In the central United States, models with climatological warm biases also feature less evapotranspiration than ERA-Interim but reasonably reproduce observed SAT variability in the region. Models that overestimate SAT variability tend to reproduce ERA-Interim SAT and evapotranspiration climatology. In light of potential model biases, this analysis calls for careful evaluation of the land–atmosphere interaction hot spot region identified in the central United States. Additionally, tropical sea surface temperatures play a role in forcing the leading EOF mode for summer SAT in models. This relationship is not apparent in observations.

Corresponding author address: Anna L. Merrifield, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., MC 0206, La Jolla, CA 92093. E-mail: almerrif@ucsd.edu
Save