• Barnes, E. A., , and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of eddy-driven jets. J. Atmos. Sci., 68, 28932908, doi:10.1175/JAS-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , and D. W. J. Thompson, 2014: Comparing the roles of barotropic versus baroclinic feedbacks in the atmosphere’s response to mechanical forcing. J. Atmos. Sci., 71, 177194, doi:10.1175/JAS-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , D. L. Hartmann, , D. M. W. Frierson, , and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , D. W. J. Thompson, , and T. Birner, 2011: Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305, doi:10.1175/JAS-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and R. A. Plumb, 2014: Effective isentropic diffusivity of tropospheric transport. J. Atmos. Sci., 71, 34993520, doi:10.1175/JAS-D-13-0333.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , M. Barlow, , P. Kushner, , and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 53355343, doi:10.1175/2007JCLI1725.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Davis, N. A., , and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res. Atmos., 118, 77737787, doi:10.1002/jgrd.50610.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Tomas, , M. Alexander, , and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Tomas, , and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. W. Waugh, , and E. P. Gerber, 2013: The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26, 20772095, doi:10.1175/JCLI-D-12-00301.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , S. Voronin, , and L. M. Polvani, 2008: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536, doi:10.1175/2007MWR2211.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , and J. C. Fyfe, 2013: Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett., 40, 11891193, doi:10.1002/grl.50249.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , E. A. Barnes, , and T. Woollings, 2013: Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Climate Dyn., 41, 9951007, doi:10.1007/s00382-012-1560-4.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., , L. C. Shaffrey, , and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, doi:10.1007/s00382-013-1883-9.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228241, doi:10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, doi:10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climate, 19, 57215727, doi:10.1175/JCLI4007.1.

    • Search Google Scholar
    • Export Citation
  • O’Rourke, A. K., , and G. K. Vallis, 2013: Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J. Atmos. Sci., 70, 26142628, doi:10.1175/JAS-D-12-0303.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ring, M. J., , and R. A. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626, doi:10.1175/JAS4031.1.

    • Search Google Scholar
    • Export Citation
  • Ring, M. J., , and R. A. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, doi:10.1175/2008JAS2773.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Shaw, T., , and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, doi:10.1038/ngeo2449.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, doi:10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Sheshadri, A., , R. A. Plumb, , and E. P. Gerber, 2015: Seasonal variability of the polar stratospheric vortex in an idealized AGCM with varying tropospheric wave forcing. J. Atmos. Sci., 72, 22482266, doi:10.1175/JAS-D-14-0191.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , M. Blackburn, , J. D. Haigh, , and S. Sparrow, 2010: The impact of the state of the troposphere on the response to stratospheric heating in a simplified GCM. J. Climate, 23, 61666185, doi:10.1175/2010JCLI3792.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , M. Blackburn, , and J. D. Haigh, 2012: A mechanism for the effect of tropospheric jet structure on the annular mode–like response to stratospheric forcing. J. Atmos. Sci., 69, 21522170, doi:10.1175/JAS-D-11-0188.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , T. G. Shepherd, , P. Hitchcock, , and J. F. Scinocca, 2013: Southern annular mode dynamics in observations and models. Part II: Eddy feedbacks. J. Climate, 26, 52205241, doi:10.1175/JCLI-D-12-00495.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., , and S. Lee, 2005: The response of the westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757, doi:10.1175/JAS3571.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., , J. C. Fyfe, , N. Gillett, , and G. J. Marshall, 2015: Comparing trends in the southern annular mode and surface westerly jet. J. Climate, 28, 88408859, doi:10.1175/JCLI-D-15-0334.1.

    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., , L. M. Polvani, , and S. M. Davis, 2011: The response of the tropospheric circulation to water vapor–like forcings. J. Climate, 24, 57135720, doi:10.1175/JCLI-D-11-00069.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. L., , D. W. Waugh, , and A. Gnanadesikan, 2015: Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophys. Res. Lett., 42, 55085515, doi:10.1002/2015GL064521.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and T. Birner, 2012: On the linkages between the tropospheric isentropic slope and eddy fluxes of heat during Northern Hemisphere winter. J. Atmos. Sci., 69, 18111823, doi:10.1175/JAS-D-11-0187.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , E. P. Gerber, , and L. M. Polvani, 2012: Abrupt circulation responses to tropical upper-tropospheric warming in a relatively simple stratosphere-resolving AGCM. J. Climate, 25, 40974115, doi:10.1175/JCLI-D-11-00166.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Hannachi, , and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , and K. L. Smith, 2016: Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. J. Climate, 29, 20412058, doi:10.1175/JCLI-D-15-0602.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 10
PDF Downloads 52 52 10

Seasonal Sensitivity of the Eddy-Driven Jet to Tropospheric Heating in an Idealized AGCM

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

A dry dynamical core is used to investigate the seasonal sensitivity of the circulation to two idealized thermal forcings: a tropical upper-tropospheric heating and a polar lower-tropospheric heating. The thermal forcings are held constant, and the response of the circulation in each month of the year is explored. First, the circulation responses to tropical warming and polar warming are studied separately, and then the response to the simultaneously applied forcings is analyzed. Finally, the seasonality of the internal variability of the circulation is explored as a possible mechanism to explain the seasonality of the responses. The primary results of these experiments are as follows: 1) There is a seasonal sensitivity in the circulation response to both the tropical and polar forcings. 2) The jet position response to each forcing is greatest in the transition seasons, and the jet speed response exhibits a seasonal sensitivity to both forcings, although the seasonal sensitivities are not the same. 3) The circulation response is nonlinear in the transition seasons, but approximately linear in the winter months. 4) The internal variability of the unforced circulation exhibits a seasonal sensitivity that may partly explain the seasonal sensitivity of the forced response. The seasonality of the internal variability of daily MERRA reanalysis data is compared to that of the model, demonstrating that the broad conclusions drawn from this idealized modeling study may be useful for understanding the jet response to anthropogenic forcing.

Corresponding author address: Marie C. McGraw, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: mmcgraw@atmos.colostate.edu

Abstract

A dry dynamical core is used to investigate the seasonal sensitivity of the circulation to two idealized thermal forcings: a tropical upper-tropospheric heating and a polar lower-tropospheric heating. The thermal forcings are held constant, and the response of the circulation in each month of the year is explored. First, the circulation responses to tropical warming and polar warming are studied separately, and then the response to the simultaneously applied forcings is analyzed. Finally, the seasonality of the internal variability of the circulation is explored as a possible mechanism to explain the seasonality of the responses. The primary results of these experiments are as follows: 1) There is a seasonal sensitivity in the circulation response to both the tropical and polar forcings. 2) The jet position response to each forcing is greatest in the transition seasons, and the jet speed response exhibits a seasonal sensitivity to both forcings, although the seasonal sensitivities are not the same. 3) The circulation response is nonlinear in the transition seasons, but approximately linear in the winter months. 4) The internal variability of the unforced circulation exhibits a seasonal sensitivity that may partly explain the seasonal sensitivity of the forced response. The seasonality of the internal variability of daily MERRA reanalysis data is compared to that of the model, demonstrating that the broad conclusions drawn from this idealized modeling study may be useful for understanding the jet response to anthropogenic forcing.

Corresponding author address: Marie C. McGraw, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: mmcgraw@atmos.colostate.edu
Save