Thermal Stratification in Simulations of Warm Climates: A Climatology Using Saturation Potential Vorticity

Ryan A. Zamora Texas A&M University, College Station, Texas

Search for other papers by Ryan A. Zamora in
Current site
Google Scholar
PubMed
Close
,
Robert L. Korty Texas A&M University, College Station, Texas

Search for other papers by Robert L. Korty in
Current site
Google Scholar
PubMed
Close
, and
Matthew Huber University of New Hampshire, Durham, New Hampshire

Search for other papers by Matthew Huber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial and temporal distribution of stable and convectively neutral air masses is examined in climate simulations with carbon dioxide levels spanning from modern-day values to very high levels that produce surface temperatures relevant to the hottest climate of the past 65 million years. To investigate how stability with respect to slantwise and upright moist convection changes across a wide range of climate states, the condition of moist convective neutrality in climate experiments is assessed using metrics based upon the saturation of potential vorticity, which is zero when temperature profiles are moist adiabatic profiles along vortex lines. The modern climate experiment reproduces previously reported properties from reanalysis data, in which convectively neutral air masses are common in the tropics and locally at higher latitudes, especially over midlatitude continents in summer and ocean storm tracks in winter. The frequency and coverage of air masses with higher stabilities declines in all seasons at higher latitudes with warming; the hottest case features convectively neutral air masses in the Arctic a majority of the time in January and nearly universally in July. The contribution from slantwise convective motions (as distinct from upright convection) is generally small outside of midlatitude storm tracks, and it declines in the warmer climate experiments, especially during summer. These findings support the conjecture that moist adiabatic lapse rates become more widespread in warmer climates, providing a physical basis for using this assumption in estimating paleoaltimetry during warm intervals such as the early Eocene.

Denotes Open Access content.

Corresponding author address: Ryan A. Zamora, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, Texas 77843-3150. E-mail: zamora.raz@gmail.com.

Abstract

The spatial and temporal distribution of stable and convectively neutral air masses is examined in climate simulations with carbon dioxide levels spanning from modern-day values to very high levels that produce surface temperatures relevant to the hottest climate of the past 65 million years. To investigate how stability with respect to slantwise and upright moist convection changes across a wide range of climate states, the condition of moist convective neutrality in climate experiments is assessed using metrics based upon the saturation of potential vorticity, which is zero when temperature profiles are moist adiabatic profiles along vortex lines. The modern climate experiment reproduces previously reported properties from reanalysis data, in which convectively neutral air masses are common in the tropics and locally at higher latitudes, especially over midlatitude continents in summer and ocean storm tracks in winter. The frequency and coverage of air masses with higher stabilities declines in all seasons at higher latitudes with warming; the hottest case features convectively neutral air masses in the Arctic a majority of the time in January and nearly universally in July. The contribution from slantwise convective motions (as distinct from upright convection) is generally small outside of midlatitude storm tracks, and it declines in the warmer climate experiments, especially during summer. These findings support the conjecture that moist adiabatic lapse rates become more widespread in warmer climates, providing a physical basis for using this assumption in estimating paleoaltimetry during warm intervals such as the early Eocene.

Denotes Open Access content.

Corresponding author address: Ryan A. Zamora, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, Texas 77843-3150. E-mail: zamora.raz@gmail.com.
Save
  • Abbot, D. S., C. C. Walker, and E. Tziperman, 2009: Can a convective cloud feedback help to eliminate winter sea ice at high CO2 concentrations? J. Climate, 22, 5719–5731, doi:10.1175/2009JCLI2854.1.

    • Search Google Scholar
    • Export Citation
  • Archer, D., and Coauthors, 2009: Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci., 37, 117–134, doi:10.1146/annurev.earth.031208.100206.

    • Search Google Scholar
    • Export Citation
  • Barry, L., G. C. Craig, and J. Thuburn, 2000: A GCM investigation into the nature of baroclinic adjustment. J. Atmos. Sci., 57, 1141–1155, doi:10.1175/1520-0469(2000)057<1141:AGIITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945–962, doi:10.1002/qj.49710544615.

    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1933: The adiabatic lapse-rate for dry and saturated air. Quart. J. Roy. Meteor. Soc., 59, 351–360, doi:10.1002/qj.49705925204.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2013: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett., 40, 5223–5227, doi:10.1002/grl.50971.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA, 110, 14 162–14 167, doi:10.1073/pnas.1303365110.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and R. Rossi, 1987: The relationship between tropopause potential temperature and the buoyant energy of storm air. J. Atmos. Sci., 44, 2902–2911, doi:10.1175/1520-0469(1987)044<2902:TRBTPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and R. Rossi, 1989: Relationship between the midlatitude tropopause potential temperature and the thermodynamics of surface air. J. Atmos. Sci., 46, 2135–2142, doi:10.1175/1520-0469(1989)046<2135:RBTMTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983a: The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci., 40, 2368–2376, doi:10.1175/1520-0469(1983)040<2368:TLPDOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983b: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 2016–2033, doi:10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485, doi:10.1038/326483a0.

  • Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 1805–1816, doi:10.1175/1520-0493(1988)116<1805:OEOSCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 2008: Back to Norway: An essay. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 87–96.

  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz. Meteor. Z., 59, 271–281.

  • Forest, C. E., 2007: Paleoaltimetry: A review of thermodynamic methods. Rev. Mineral. Geochem., 66, 173–193, doi:10.2138/rmg.2007.66.7.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., P. Molnar, and K. A. Emanuel, 1995: Palaeoaltimetry from energy conservation principles. Nature, 374, 347–350, doi:10.1038/374347a0.

    • Search Google Scholar
    • Export Citation
  • Forest, C. E., J. A. Wolfe, P. Molnar, and K. A. Emanuel, 1999: Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate. Geol. Soc. Amer. Bull., 111, 497–511, doi:10.1130/0016-7606(1999)111<0497:PIAPAB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 1049–1062, doi:10.1175/2007JAS2373.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and N. A. Davis, 2011: The seasonal cycle of midlatitude static stability over land and ocean in global reanalyses. Geophys. Res. Lett., 38, L13803, doi:10.1029/2011GL047747.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., 2005: An atmospheric balanced model of an axisymmetric vortex with zero potential vorticity. Tellus, 57A, 55–64, doi:10.1111/j.1600-0870.2005.00089.x.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53–56, doi:10.1038/nature06502.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412–417, doi:10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2011: The early Eocene equable climate problem revisited. Climate Past, 7, 603–633, doi:10.5194/cp-7-603-2011.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and K. A. Hart, 1996: Tropical inversions near the 0°C level. J. Atmos. Sci., 53, 1838–1855, doi:10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 3050–3057, doi:10.1175/1520-0469(2000)057<3050:TSSOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and K. A. Emanuel, 2007: The dynamic response of the winter stratosphere to an equable climate surface temperature gradient. J. Climate, 20, 5213–5228, doi:10.1175/2007JCLI1556.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 5977–5991, doi:10.1175/2007JCLI1788.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., S. J. Camargo, and J. Galewsky, 2012: Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Climate, 25, 4348–4365, doi:10.1175/JCLI-D-11-00517.1.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1993: Baroclinic neutrality and the tropopause. J. Atmos. Sci., 50, 1148–1151, doi:10.1175/1520-0469(1993)050<1148:BNATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lunt, D. J., and Coauthors, 2012: A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Climate Past, 8, 1717–1736, doi:10.5194/cp-8-1717-2012.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyer, H. W., 2007: A review of paleotemperature–lapse rate methods for estimating paleoelevation from fossil floras. Rev. Mineral. Geochem., 66, 155–171, doi:10.2138/rmg.2007.66.6.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 75–90, doi:10.1175/2010JAS3537.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 1075–1078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 1784–1806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and J. A. Coakley Jr., 1978: Climate modeling through radiative-convective models. Rev. Geophys., 16, 465–489, doi:10.1029/RG016i004p00465.

    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1977: The parameterization of tropospheric lapse rates in terms of surface temperature. J. Atmos. Sci., 34, 854–862, doi:10.1175/1520-0469(1977)034<0854:TPOTLR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307–343, doi:10.1023/A:1005386312622.

    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., 1985: A simple theory for the vertical structure of the tropical atmosphere. Pure Appl. Geophys., 123, 261–271, doi:10.1007/BF00877022.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 1317–1340, doi:10.1175/1520-0469(2004)061<1317:TTATTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of the atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 1569–1586, doi:10.1175/JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., S. A. Hausman, M. Garcia, K. V. Ooyama, and H.-C. Kuo, 2001: Potential vorticity in a moist atmosphere. J. Atmos. Sci., 58, 3148–3157, doi:10.1175/1520-0469(2001)058<3148:PVIAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 9552–9555, doi:10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., A. Untch, C. Jakob, P. KÃ¥llberg, and P. Undén, 1999: Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Quart. J. Roy. Meteor. Soc., 125, 353–386, doi:10.1002/qj.49712555318.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561–571, doi:10.1175/1520-0469(1978)035<0561:BA>2.0.CO;2.

  • Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36, 415–423, doi:10.1175/1520-0469(1979)036<0415:ALRRAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teisserenc de Bort, L. P., 1902: Variations de la température de l’air libre dans la zone comprise entre 8 km et 13 km d’altitude. C. R. Acad. Sci. Paris, 134, 987–989.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46, 2509–2527, doi:10.1175/1520-0469(1989)046<2509:LSWSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., R. T. Pierrehumbert, and M. Huber, 2009: Global warming, convective threshold and false thermostats. Geophys. Res. Lett., 36, L21805, doi:10.1029/2009GL039849.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471–1479, doi:10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 371 86 9
PDF Downloads 283 39 7